Abstract

A novel lattice structure for the design of two-port optical interleavers is presented. With the proposed lattice structure, the exact linear-phase characteristics of the two outputs of interleavers are guaranteed. The desired spectral characteristics are achieved with appropriate choices of design parameters through an optimization algorithm. It is shown that the linear-phase characteristics of the proposed interleaver are retained even in the presence of design parameter variations. The simulation results verified the effectiveness of the proposed structure and design scheme.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, J. Lightwave Technol. 22, 281 (2004).
    [CrossRef]
  2. Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 16, 168 (2004).
    [CrossRef]
  3. Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 17, 387 (2005).
    [CrossRef]
  4. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
    [CrossRef]
  5. T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.
  6. B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
    [CrossRef]
  7. M. E. Marhic, Opt. Lett. 12, 63 (1987).
    [CrossRef] [PubMed]
  8. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
    [CrossRef]
  9. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), Chap 6.
    [CrossRef]
  10. T. Hurvitz, S. Ruschin, D. Brooks, G. Hurvitz, and E. Arad, J. Lightwave Technol. 23, 1918 (2005).
    [CrossRef]

2005 (2)

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 17, 387 (2005).
[CrossRef]

T. Hurvitz, S. Ruschin, D. Brooks, G. Hurvitz, and E. Arad, J. Lightwave Technol. 23, 1918 (2005).
[CrossRef]

2004 (4)

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, J. Lightwave Technol. 22, 281 (2004).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 16, 168 (2004).
[CrossRef]

2003 (1)

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

1987 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), Chap 6.
[CrossRef]

Arad, E.

Arai, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Brainard, R.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Brooks, D.

Cao, S.

Chen, J.

Cheng, W. H.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Chiba, T.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Damask, J. N.

Daxhelet, X.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

Doerr, C. R.

Egan, E.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Fondeur, B.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Gopinathan, N.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Grubsky, V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

Guiziou, L.

Harvey, G.

Hibino, Y.

Hsieh, C. H.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Huang, S. Y.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Hurvitz, G.

Hurvitz, T.

Kulishov, M.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

Lee, C. W.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Li, H.

Marhic, M. E.

Nakamoto, D.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Nonen, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Ohira, K.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Okano, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Plant, D. V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

Ruschin, S.

Sala, A. L.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Schwartz, J.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

Soh, Y. C.

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 17, 387 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 16, 168 (2004).
[CrossRef]

Suzuki, S.

Thekdi, S.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Uetsuka, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Vaidyanathan, A.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Wang, Q. J.

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 17, 387 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 16, 168 (2004).
[CrossRef]

Wang, R.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Wu, K.-Y.

Xie, P.

Yamada, H.

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Yeh, P.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Zhang, Y.

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 17, 387 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 16, 168 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, IEEE J. Quantum Electron. 40, 1715 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thekdi, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan, IEEE Photonics Technol. Lett. 16, 2628 (2004).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 16, 168 (2004).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, IEEE Photonics Technol. Lett. 17, 387 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, Opt. Commun. 237, 285 (2003).
[CrossRef]

Opt. Lett. (1)

Other (2)

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), Chap 6.
[CrossRef]

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and H. Uetsuka, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper WB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Proposed lattice structure for implementing linear-phase two-port interleavers.

Fig. 2
Fig. 2

Performance of the designed linear-phase interleavers. (a) Amplitude responses of the two interleavers with lattice stage N = 5 and N = 11 . (b) Linear-phase responses of the interleaver with N = 5 .

Fig. 3
Fig. 3

Chromatic dispersion characteristics of the linear-phase interleavers in the presence of design parameter deviations. (a) Proposed method, (b) existing method.[5]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( H 1 ( z ) H 2 ( z ) ) = S { k = N 1 S k } S 0 ( 1 0 ) .
H 1 ( z ) = z ( M 1 ) H 1 ( z 1 ) ,
H 2 ( z ) = z ( M 1 ) H 2 ( z 1 ) ,
H 2 ( z ) = H 1 ( e j π z ) .

Metrics