Abstract

We demonstrate a novel, simple, and comprehensive method for probing optical microfiber surface and bulk distortions with subnanometer accuracy. The method employs a regular optical fiber as a probe that slides along a microfiber transmitting the fundamental mode. The fraction of radiation power absorbed in the probe depends on the local distribution of the mode propagating in the microfiber. From the measured variation of the absorbed power, we determine the variation of the effective microfiber radius, which takes into account both the microfiber radius and refractive index variations. Furthermore, we verify the cylindrical symmetry of the microfiber nonuniformities by probing the microfiber from different sides. These results explain observed transmission losses in silica microfibers and open broad opportunities for microfiber investigation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef] [PubMed]
  2. G. Brambilla, V. Finazzi, and D. J. Richardson, Opt. Express 12, 2258 (2004).
    [CrossRef] [PubMed]
  3. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  4. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
    [CrossRef]
  5. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, J. Lightwave Technol. 24, 242 (2006).
    [CrossRef]
  6. M. Sumetsky, Opt. Lett. 31, 87 (2006).
  7. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Express 13, 7779 (2005).
    [CrossRef] [PubMed]
  8. D. Marcuse, Appl. Opt. 23, 1082 (1984).
    [CrossRef] [PubMed]

2006 (2)

2005 (2)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Express 13, 7779 (2005).
[CrossRef] [PubMed]

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

2004 (2)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

1984 (1)

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Brambilla, G.

Couny, F.

DiGiovanni, D. J.

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Dulashko, Y.

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Finazzi, V.

Fini, J. M.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Hale, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Leon-Saval, S. G.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Mägi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Mangan, B. J.

Marcuse, D.

Mason, M. W.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

Russell, P. St. J.

Sabert, H.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, Appl. Phys. B 81, 377 (2005).
[CrossRef]

Sumetsky, M.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the measurement method. A partly stripped fiber probe slides along the MF. Different sides of the MF can be tested by rotation of the MF with respect to the probe.

Fig. 2
Fig. 2

(a) Cross-sectional geometry of the MF-probe contact; (b) model of a spike at the MF surface. Dotted–dashed curve is the trajectory of the probe.

Fig. 3
Fig. 3

Comparison of the transmission power as a function of probe position measured by an OSA calibrated for the free MF with the MF radius variation measured by a SEM.

Fig. 4
Fig. 4

MF radius variation along a 500 μ m segment. (a) Curves 1 and 2, two measurements of this segment shifted with respect to each other along the y axis for visibility; curve 3, measurement of the same segment after MF rotation by 90°; (b) curves 1 and 2 enlarged along the 100 μ m segment; (c) enlarged peaks of Fig. 4a.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T = exp [ 2 + α p ( z , z p ) d z ] .
T = exp [ R λ f ( r λ ) r ] .
10 Δ log [ T ( z ) ] = C Δ r ( z ) ,
C = λ R ( 0.54 r 0.85 λ ) r 3 .
α p [ Δ r ( z ) , h ( z , z p ) ] = α p [ 0 , ( z z p ) 2 2 R ] + ( α p Δ r α p h ) Δ r ( z ) + α p h [ Δ r ( z p ) + h ( z p , z p ) ] ,
Δ z s = 2 Δ r s R ,
α MF ( γ Δ r r ) 2 β 1 exp ( γ 2 L β ) ,

Metrics