Abstract

Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, T. E. Milner, M. C. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997).
    [CrossRef] [PubMed]
  2. J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
    [PubMed]
  3. S. L. Jiao, W. R. Yu, G. Stoica, and L. H. V. Wang, Appl. Opt. 42, 5191 (2003).
    [CrossRef] [PubMed]
  4. S. J. Matcher, C. P. Winlove, and S. V. Gangnus, Phys. Med. Biol. 49, 1295 (2004).
    [CrossRef] [PubMed]
  5. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, Opt. Express 13, 4507 (2005).
    [CrossRef] [PubMed]
  6. N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
    [CrossRef]
  7. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  8. C. Gu and P. Yeh, J. Opt. Soc. Am. A 10, 966 (1993).
    [CrossRef]
  9. S. V. Gangnus, S. J. Matcher, and I. V. Meglinsky, Laser Phys. 14, 886 (2004).

2005 (2)

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, Opt. Express 13, 4507 (2005).
[CrossRef] [PubMed]

N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
[CrossRef]

2004 (2)

S. V. Gangnus, S. J. Matcher, and I. V. Meglinsky, Laser Phys. 14, 886 (2004).

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, Phys. Med. Biol. 49, 1295 (2004).
[CrossRef] [PubMed]

2003 (1)

1999 (1)

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

1997 (1)

1993 (1)

Attenburrow, D. A.

N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
[CrossRef]

Boppart, S. A.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Bouma, B. E.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Brezinski, M. E.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

de Boer, J. F.

Fujimoto, J. G.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Gangnus, S. V.

S. V. Gangnus, S. J. Matcher, and I. V. Meglinsky, Laser Phys. 14, 886 (2004).

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, Phys. Med. Biol. 49, 1295 (2004).
[CrossRef] [PubMed]

Gu, C.

Herrmann, J. M.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Jesser, C. A.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Jiao, S. L.

Kemp, N. J.

Matcher, S. J.

N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
[CrossRef]

S. V. Gangnus, S. J. Matcher, and I. V. Meglinsky, Laser Phys. 14, 886 (2004).

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, Phys. Med. Biol. 49, 1295 (2004).
[CrossRef] [PubMed]

Meglinsky, I. V.

S. V. Gangnus, S. J. Matcher, and I. V. Meglinsky, Laser Phys. 14, 886 (2004).

Milner, T. E.

Nelson, J. S.

Park, J.

Pitris, C.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Rylander, H. G.

Stamper, D. L.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Stoica, G.

Ugryumova, N.

N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
[CrossRef]

van Gemert, M. C.

Wang, L. H. V.

Winlove, C. P.

N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
[CrossRef]

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, Phys. Med. Biol. 49, 1295 (2004).
[CrossRef] [PubMed]

Yeh, P.

C. Gu and P. Yeh, J. Opt. Soc. Am. A 10, 966 (1993).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Yu, W. R.

Zaatari, H. N.

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

N. Ugryumova, C. P. Winlove, D. A. Attenburrow, and S. J. Matcher, J. Phys. D 38, 2612 (2005).
[CrossRef]

J. Rheumatol. (1)

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, J. Rheumatol. 26, 627 (1999).
[PubMed]

Laser Phys. (1)

S. V. Gangnus, S. J. Matcher, and I. V. Meglinsky, Laser Phys. 14, 886 (2004).

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, Phys. Med. Biol. 49, 1295 (2004).
[CrossRef] [PubMed]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Retardance oscillations produced by a tendon sample cut to nominally yield at normal incidence (a) θ = 90 ° and (b) θ = 40 ° . The ratio of the resulting fringe spacings implies a Δ n ratio of 0.37. Using Eq. (1) and assuming n o = 1.4 , this corresponds to θ = 38 ° for geometry (b), in good agreement with the nominal value.

Fig. 2
Fig. 2

Retardance maps at a fixed site on the sagittal ridge of equine cartilage as a function of probe beam incidence angle. Incidence angles (top to bottom) are + 10 ° , 30 ° , 70 ° .

Fig. 3
Fig. 3

Schematic (sagittal section) of the sagittal ridge of an equine metacarpophalangeal (fetlock) joint, showing the dominant fiber polar angle at various points along the ridge. The dotted lines denote the local z ̂ .

Tables (1)

Tables Icon

Table 1 True Birefringence n e n o and Fiber Polar Angle θ of a Sample of Tendon Cut to Achieve a Planar Surface Inclined at 20 ° to the Long Axis, i.e., a Nominal Fiber Polar Angle of 70 ° a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 n 2 = sin 2 θ c n e 2 + cos 2 θ c n o 2 .
Δ n i = n o [ n e n o 2 sin 2 ( θ γ i ) + n e 2 cos 2 ( θ γ i ) 1 ] .

Metrics