Abstract

We present an architecture permitting broad tuning of monolithic microchip lasers by using a wedged etalon. Full tuning from 282to314nm is demonstrated by using a miniature Ce:LiCAF laser design, where tuning is achieved by translating the entire Ce laser cavity relative to the pump beam. The application of this technique to a range of microchip lasers will lead to extremely robust tunable monolithic lasers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, Laser Focus World 35, 129 (1999).
  2. J. J. Zayhowski, J. Harrison, C. Dill, and J. Ochoa, Appl. Opt. 34, 435 (1995).
    [CrossRef] [PubMed]
  3. J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
    [CrossRef]
  4. G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).
  5. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kartner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, Opt. Lett. 26, 941 (2001).
    [CrossRef]
  6. J. J. Zayhowski and A. S. L. Wilson, IEEE J. Quantum Electron. 38, 1449 (2002).
    [CrossRef]
  7. J. Brossel, Proc. Phys. Soc. London 59, 224 (1947).
    [CrossRef]
  8. S. Tolansky, An Introduction to Interferometry, 2nd ed. (Longman, 1973).
  9. M. Nenchev and E. Stoykova, Opt. Quantum Electron. 25, 789 (1993).
    [CrossRef]
  10. W. R. Leeb, Appl. Phys. 6, 267 (1975).
    [CrossRef]
  11. D. W. Coutts and A. J. S. McGonigle, IEEE J. Quantum Electron. 40, 1430 (2004).
    [CrossRef]
  12. J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
    [CrossRef]

2004 (2)

D. W. Coutts and A. J. S. McGonigle, IEEE J. Quantum Electron. 40, 1430 (2004).
[CrossRef]

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

2002 (1)

J. J. Zayhowski and A. S. L. Wilson, IEEE J. Quantum Electron. 38, 1449 (2002).
[CrossRef]

2001 (2)

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kartner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, Opt. Lett. 26, 941 (2001).
[CrossRef]

1999 (1)

J. J. Zayhowski, Laser Focus World 35, 129 (1999).

1995 (2)

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

J. J. Zayhowski, J. Harrison, C. Dill, and J. Ochoa, Appl. Opt. 34, 435 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Nenchev and E. Stoykova, Opt. Quantum Electron. 25, 789 (1993).
[CrossRef]

1975 (1)

W. R. Leeb, Appl. Phys. 6, 267 (1975).
[CrossRef]

1947 (1)

J. Brossel, Proc. Phys. Soc. London 59, 224 (1947).
[CrossRef]

Brossel, J.

J. Brossel, Proc. Phys. Soc. London 59, 224 (1947).
[CrossRef]

Butendeich, R.

Coutts, D. W.

D. W. Coutts and A. J. S. McGonigle, IEEE J. Quantum Electron. 40, 1430 (2004).
[CrossRef]

Dill, C.

French, P. M. W.

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

Graf, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Harder, C.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Harrison, J.

Hetzler, J.

Huber, G.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Kartner, F. X.

Keller, U.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Kremp, T.

Kullberg, M. P.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Leeb, W. R.

W. R. Leeb, Appl. Phys. 6, 267 (1975).
[CrossRef]

McGonigle, A. J. S.

D. W. Coutts and A. J. S. McGonigle, IEEE J. Quantum Electron. 40, 1430 (2004).
[CrossRef]

Mellish, R.

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

Mix, E.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Morgner, U.

Moser, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Nenchev, M.

M. Nenchev and E. Stoykova, Opt. Quantum Electron. 25, 789 (1993).
[CrossRef]

Ochoa, J.

Paschotta, R.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Ruan, S.

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

Schibli, T. R.

Scholz, F.

Schwarz, J.

Schweizer, H.

Spuhler, G. J.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

Stoykova, E.

M. Nenchev and E. Stoykova, Opt. Quantum Electron. 25, 789 (1993).
[CrossRef]

Sutherland, J. M.

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

Taylor, J. R.

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

Tiwari, S.

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Tolansky, S.

S. Tolansky, An Introduction to Interferometry, 2nd ed. (Longman, 1973).

Van Delden, J. S.

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Wahl, J. A.

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Wegener, M.

Wilson, A. S. L.

J. J. Zayhowski and A. S. L. Wilson, IEEE J. Quantum Electron. 38, 1449 (2002).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski and A. S. L. Wilson, IEEE J. Quantum Electron. 38, 1449 (2002).
[CrossRef]

J. J. Zayhowski, Laser Focus World 35, 129 (1999).

J. J. Zayhowski, J. Harrison, C. Dill, and J. Ochoa, Appl. Opt. 34, 435 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. (1)

W. R. Leeb, Appl. Phys. 6, 267 (1975).
[CrossRef]

Appl. Phys. B (1)

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, Appl. Phys. B 72, 285 (2001).

IEEE J. Quantum Electron. (2)

J. J. Zayhowski and A. S. L. Wilson, IEEE J. Quantum Electron. 38, 1449 (2002).
[CrossRef]

D. W. Coutts and A. J. S. McGonigle, IEEE J. Quantum Electron. 40, 1430 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Laser Focus World (1)

J. J. Zayhowski, Laser Focus World 35, 129 (1999).

Opt. Commun. (1)

J. M. Sutherland, S. Ruan, R. Mellish, P. M. W. French, and J. R. Taylor, Opt. Commun. 113, 458 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Nenchev and E. Stoykova, Opt. Quantum Electron. 25, 789 (1993).
[CrossRef]

Proc. Phys. Soc. London (1)

J. Brossel, Proc. Phys. Soc. London 59, 224 (1947).
[CrossRef]

Other (1)

S. Tolansky, An Introduction to Interferometry, 2nd ed. (Longman, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Miniature embodiment of a translation-tuned laser. The plane–plane cavity contains the laser crystal and an etalon constructed from two dielectric-coated plates mounted at small angle. (b) Monolithic laser, which could be manufactured by coating an etalon structure, including a wedged spacer layer, directly onto one of the substrates.

Fig. 2
Fig. 2

Tuning curve for the translation-tuned Ce:LiCAF laser.

Fig. 3
Fig. 3

Laser output wavelength as a function of cavity position (filled circles, arbitrary zero). The three lines ( n = 7 , 8, and 9) show the wavelength of transmission in n th order of the etalon and the calculated etalon thickness as a function of etalon position (solid line only).

Metrics