Abstract

We demonstrate a novel principle of self-starting mode locking in a compact semiconductor laser diode, where the needed saturable loss is provided by spatial effects resulting from multi-spatial-mode active waveguiding. The demonstrated device operates over a 1.54μm wavelength range and has a repetition rate of 47GHz. The pulse width is below 5ps, and the average power coupled to the cleaved single-mode fiber is nearly 0dBm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, 1986).
  2. J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996).
    [CrossRef]
  3. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [CrossRef]
  4. H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
    [CrossRef]
  5. H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
    [CrossRef]
  6. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, Opt. Lett. 17, 1292 (1992).
    [CrossRef] [PubMed]
  7. H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994).
    [CrossRef]
  8. P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
    [CrossRef]
  9. For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).
  10. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
    [CrossRef] [PubMed]
  11. Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
    [CrossRef]
  12. M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994).
    [CrossRef]
  13. C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999).
    [CrossRef]
  14. D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
    [CrossRef]
  15. K. Y. Lau, J. Lightwave Technol. 7, 400 (1989).
    [CrossRef]

2004 (1)

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

2002 (2)

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

2000 (2)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

1999 (1)

C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999).
[CrossRef]

1996 (1)

J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996).
[CrossRef]

1994 (2)

H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994).
[CrossRef]

M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994).
[CrossRef]

1992 (1)

1989 (2)

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

K. Y. Lau, J. Lightwave Technol. 7, 400 (1989).
[CrossRef]

1975 (2)

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Akiyama, K.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Angelo, C.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Baillargeon, J. N.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Bernasconi, P.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Birkedal, D.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Bowers, J. E.

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

Brabec, T.

Cabot, S.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Capasso, F.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Cho, A. Y.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Christiansen, L. J.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Curley, P. F.

Doerr, C. R.

C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999).
[CrossRef]

Dugan, M. A.

J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996).
[CrossRef]

Glance, B.

M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994).
[CrossRef]

Gmachl, C.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Hanberg, J.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Haus, H. A.

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994).
[CrossRef]

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Higuchi, H.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Hutchinson, A. L.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Hvam, J. M.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994).
[CrossRef]

Isu, T.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Joyner, C. H.

C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999).
[CrossRef]

M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994).
[CrossRef]

Koszi, L. A.

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

Krausz, F.

Larsson, D.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Lau, K. Y.

K. Y. Lau, J. Lightwave Technol. 7, 400 (1989).
[CrossRef]

Liu, H. C.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Lopata, J.

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

Miller, B. I.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Mork, J.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Morton, P. A.

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

Nomura, Y.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Ochi, S.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Oxenlwe, L. K.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Paiella, R.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Sauer, N. J.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Sivco, D. L.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Soler, M.

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

Spielmann, Ch.

Stulz, L.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Stulz, L. W.

C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999).
[CrossRef]

Takiguchi, T.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Tamura, K. R.

H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994).
[CrossRef]

Tomita, N.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Tull, J. X.

J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996).
[CrossRef]

Van Thourhout, D.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Warren, W. S.

J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996).
[CrossRef]

Wilt, D. P.

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

Yang, W.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Yvind, K.

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

Zhang, L.

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

Zirngibl, M.

M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994).
[CrossRef]

Adv. Magn. Opt. Reson. (1)

J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994).
[CrossRef]

C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999).
[CrossRef]

For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).

IEEE Trans. Electron Devices (1)

P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

J. Lightwave Technol. (1)

K. Y. Lau, J. Lightwave Technol. 7, 400 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Science (1)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000).
[CrossRef] [PubMed]

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Active waveguide structure, consisting of multiple InGaAsP quaternary layers of different compositions. From top to bottom, they are an active layer of MQWs, two passive Q - 1.3 quaternary layers, one Q - 1.2 , and one Q - 1.1 layer. All layers are enclosed in the host material InP .

Fig. 2
Fig. 2

Optical spectra of a self-starting mode-locked 1.54 μ m semiconductor laser under various forward-biasing levels. The optical spectrum is measured with a resolution bandwidth of 1.0 nm . The vertical axis (optical power) is on a linear scale. The spectral expansion toward the longer wavelength side at higher biasing levels is a clear indication of a self-phase modulation effect.

Fig. 3
Fig. 3

RF peak at 47.13 GHz , shown in a 10 MHz span. The FWHM is below 1 MHz . The resolution bandwidth is 1 MHz .

Fig. 4
Fig. 4

Intensity autocorrelation trace of 47 GHz pulse train at a bias of 80 mA . The FWHM of the autocorrelation peak is 7.9 ps .

Metrics