Abstract

A simplified phenomenological model for the description of randomly birefringent, strongly spun fibers is proposed. It is shown that the spinning, besides causing an apparent reduction of the linear random birefringence, may also induce an apparent deterministic circular birefringence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Li and D. A. Nolan, Opt. Lett. 23, 1659 (1998).
    [CrossRef]
  2. A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett. 27, 692 (2002).
    [CrossRef]
  3. A. Galtarossa, L. Palmieri, A. Pizzinat, and L. Schenato, Opt. Fiber Technol. 12, 205 (2006).
    [CrossRef]
  4. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  5. A.Galtarossa and C.R.Menyuk, eds., Polarization Mode Dispersion (Springer, 2005).
    [CrossRef]
  6. J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 146, 137 (1999).
    [CrossRef]
  7. B. Øksendal, Stochastic Differential Equations (Springer-Verlang, 2000).
  8. A. Galtarossa, P. Griggio, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 22, 1127 (2004).
    [CrossRef]
  9. G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
    [CrossRef]

2006

A. Galtarossa, L. Palmieri, A. Pizzinat, and L. Schenato, Opt. Fiber Technol. 12, 205 (2006).
[CrossRef]

2004

2002

1999

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 146, 137 (1999).
[CrossRef]

1998

1996

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1991

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Ellison, J. G.

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 146, 137 (1999).
[CrossRef]

Foschini, G. J.

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Galtarossa, A.

Griggio, P.

Li, M. J.

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Nolan, D. A.

Øksendal, B.

B. Øksendal, Stochastic Differential Equations (Springer-Verlang, 2000).

Palmieri, L.

Pizzinat, A.

Poole, C. D.

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Schenato, L.

A. Galtarossa, L. Palmieri, A. Pizzinat, and L. Schenato, Opt. Fiber Technol. 12, 205 (2006).
[CrossRef]

Siddiqui, A. S.

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 146, 137 (1999).
[CrossRef]

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

IEE Proc. Optoelectron.

J. G. Ellison and A. S. Siddiqui, IEE Proc. Optoelectron. 146, 137 (1999).
[CrossRef]

J. Lightwave Technol.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

A. Galtarossa, P. Griggio, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 22, 1127 (2004).
[CrossRef]

Opt. Fiber Technol.

A. Galtarossa, L. Palmieri, A. Pizzinat, and L. Schenato, Opt. Fiber Technol. 12, 205 (2006).
[CrossRef]

Opt. Lett.

Other

A.Galtarossa and C.R.Menyuk, eds., Polarization Mode Dispersion (Springer, 2005).
[CrossRef]

B. Øksendal, Stochastic Differential Equations (Springer-Verlang, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Evolution of Δ τ 2 ( z ) for p = 1 m , L B = 25 m , and L F = 5 m . Curves 1, 2, and 3 refer to r equal to p 2 , 2 p 3 , and p, respectively. Solid curves and filled dots represent numerical (RMM) and theoretical (SPM) results, respectively.

Fig. 2
Fig. 2

Evolution of the ms-SOPMD, Ω ¯ ω ( z ) 2 . Parameters and labels are the same as in Fig. 1.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

s ̂ ( z ) e η z ( cos γ z sin γ z 0 sin γ z cos γ z 0 0 0 e η z ) s ̂ 0 ,
Θ = 1 p L F [ 1 exp ( p L F ) ] 0 p 0 p exp ( u L F ) exp { j [ 2 A ( t ) 2 A ( t u ) ] } d t d u ,
η = 2 π 2 p 2 L F L B 2 ( p 2 + 16 π 2 L F 2 ) = p 4 π L F γ .
β ¯ ( z ) = ( 2 η ξ 1 ( z ) , 2 η ξ 2 ( z ) , γ ) T ,
β ¯ ω = 1 ω ( 2 η ξ 1 ( z ) , 2 η ξ 2 ( z ) , 2 γ ) T ,
β ¯ ω = ( β ¯ ω ) ω = 1 ω 2 ( 0 , 0 , 2 γ ) T ,
s ̂ ( z ) z = ( η γ 0 γ η 0 0 0 2 η ) s ̂ ( z ) ,
Δ τ 2 ( z ) z = 4 η ω 2 4 γ ω Ω 3 ( z ) ,
Ω 3 ( z ) z = 2 γ ω σ 2 Ω 3 ( z ) ,
Δ τ 2 ( z ) = 4 ω 2 η 2 + γ 2 η z 2 γ 2 ω 2 η 2 [ 1 exp ( 2 η z ) ] .
A ( z ) = { 2 π ζ r if 0 ζ < r 2 π ( p ζ ) ( p r ) if r ζ < p ,
B = 1 ω 2 ( 0 4 γ ω 4 γ 2 η 2 η 0 0 2 η ω 2 4 η ω 2 γ ω 2 γ ω 4 η 0 0 2 η ω 2 0 0 4 η ω 0 0 0 6 η ω 2 2 η ω 2 4 γ ω 0 0 0 0 0 4 γ ω 0 0 0 0 0 2 η ω 2 ) ,
Ω ¯ ω ( z ) 2 1 108 ( η ω ) 4 { [ 24 η ( η 2 + γ 2 ) z 28 γ 2 η 2 ] 2 + 304 γ 4 + 176 η 2 γ 2 + 7 η 4 } .

Metrics