Abstract

Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of 10°C to 80°C.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]
  2. Y. L. Yu, H. Tam, W. Chung, and M. S. Demokan, Opt. Lett. 25, 1141 (2000).
    [CrossRef]
  3. W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
    [CrossRef]
  4. R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, and L. A. Ferreira, Appl. Opt. 44, 3821 (2005).
    [CrossRef] [PubMed]
  5. Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and A. A. Chtcherbakov, Opt. Express 11, 1918 (2003).
    [CrossRef] [PubMed]
  6. T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
    [CrossRef]

2005 (2)

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, and L. A. Ferreira, Appl. Opt. 44, 3821 (2005).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

2000 (1)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Araújo, F. M.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Blanc, M. L.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Chtcherbakov, A. A.

Chung, W.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Demokan, M. S.

Dong, X. Y.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

Dou, Q. Y.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

Ferreira, L. A.

Frazão, O.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Guo, T.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

Huang, G. L.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

Kai, G. Y.

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Lacquet, M. B.

Lu, C.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Pereira, D. A.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Romero, R.

Salgado, H. M.

Shum, P.

Swart, P. L.

Tam, H.

Xue, L. F.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

Yu, Y. L.

Yuan, S. Z.

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

Zhang, H.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

Zhang, W. G.

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

Zhao, Q. D.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

Zhu, Y. N.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, and S. Z. Yuan, IEEE Photon. Technol. Lett. 13, 1340 (2001).
[CrossRef]

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, IEEE Photon. Technol. Lett. 17, 2400 (2005).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of dynamic pressure sensing system.

Fig. 2
Fig. 2

Reflection spectra of FBG versus pressure at fixed temperature of 20 ° C .

Fig. 3
Fig. 3

Reflection spectra of FBG versus temperature at fixed pressure of 50 kPa .

Fig. 4
Fig. 4

Stress distribution of DHCB under vertically applied pressure.

Fig. 5
Fig. 5

Strain magnitude distribution along the up surface of arc beam at the pressures of 55, 60, and 65 kPa .

Fig. 6
Fig. 6

Characteristics of FBG reflection spectra to temperature and pressure.

Fig. 7
Fig. 7

Output of the sensor under a pressure applied with decreasing period.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ BW = 2 n eff Λ { ( 1 p e ) Δ ϵ grad + [ ξ + ( 1 p e ) α sub ] Δ T grad } ,
Δ P = k μ 2 R P BBS ( λ ) Δ λ BW ,
Δ ϵ grad = H 2 E z 0 z 0 + L l ( z ) I ( z ) d z F ,
Δ λ BW = n eff Λ ( 1 p e ) H E z 0 z 0 + L l ( z ) I ( z ) d z F ,
Δ P = k α 2 R P BBS ( λ ) n eff Λ ( 1 p e ) H E z 0 z 0 + L l ( z ) I ( z ) d z F .

Metrics