Abstract

We propose and demonstrate a single fiber Bragg grating-based Gires–Tournois (GT) etalon, which is realized by applying a complex apodization profile on a linearly chirped fiber Bragg grating. Such a GT etalon not only has a simplified fabrication procedure but also can operate in dual directions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
    [CrossRef]
  2. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
    [CrossRef]
  3. X. Shu, K. Sugden, and K. Byron, Opt. Lett. 28, 881 (2003).
    [CrossRef] [PubMed]
  4. X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
    [CrossRef]

2005 (1)

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

2003 (2)

X. Shu, K. Sugden, and K. Byron, Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

1991 (1)

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Bennion, I.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Byron, K.

Chisholm, K.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Cimini, L.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Colbourne, P.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Felmeri, I.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Giles, C.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Gillooly, A.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Gnauck, A.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Hulse, C. A.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Kiran, S.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Korotky, S.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Lamont, M.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

McLaughlin, S.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Mitchell, J.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Moss, D. J.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Randall, G.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Rhead, P.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Shu, X.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

X. Shu, K. Sugden, and K. Byron, Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

Stone, J.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Stulz, L.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Sugden, K.

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

X. Shu, K. Sugden, and K. Byron, Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

Veselka, J.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Opt. Commun. (1)

X. Shu, K. Chisholm, J. Mitchell, I. Felmeri, P. Rhead, A. Gillooly, K. Sugden, and I. Bennion, Opt. Commun. 251, 59 (2005).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Example of a complex apodization profile designed in this work. (b) Schematic of a dual-direction multicavity GT etalon.

Fig. 2
Fig. 2

Calculated GD response of a dual-direction GT etalon. Input from the (a) short-wavelength end and (b) long-wavelength end. GD of a (a) normal apodized CFBG and (b) normal uniform CFBG. The data have been offset for clarity.

Fig. 3
Fig. 3

Measured response of a dual-direction GT etalon. (a) Transmission and reflection spectra, (b) GD from different launch ends, and (c) GD plotted in a smaller wavelength range.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 + Δ n [ 1 + F ( z ) cos ( 2 π Λ ( z ) z ) ] ,
F ( z ) = [ 1 + N m N cos ( 2 N π P z ) ] f ( z ) ,
n ( z ) = n 0 + Δ n { 1 + f ( z ) cos [ 2 π Λ ( z ) z ] + N 1 2 m N f ( z ) cos [ 2 π Λ + N ( z ) z ] + N 1 2 m N f ( z ) cos [ 2 π Λ N ( z ) z ] } ,

Metrics