Abstract

A radio-over-fiber system uses light to carry a microwave subcarrier on optical fibers. The microwave is usually frequency modulated for wireless broadcasting. A conventional optical communication system usually operates at the baseband with amplitude modulation. The interface of the two systems thus needs an upconversion from the baseband to the microwave band with AM-to-FM transformation. An all-optical solution employing an optically injected semiconductor laser is investigated. The laser is operated in a dynamic state, where its intensity oscillates at a microwave frequency that varies with the injection strength. When the injection carries AM data, the microwave is frequency modulated accordingly. We demonstrate optical conversion from an OC-12 622-Mbps AM baseband signal to the corresponding FM microwave signal. The microwave is centered at 15.90GHz. A bit-error rate of less than 109 is measured.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gliese, Opt. Quantum Electron. 30, 1005 (1998).
    [CrossRef]
  2. D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
    [CrossRef]
  3. A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
    [CrossRef]
  4. T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
    [CrossRef]
  5. U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
    [CrossRef]
  6. S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
    [CrossRef]
  7. S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. accepted for publication.
  8. S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
    [CrossRef]
  9. S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
    [CrossRef]

2004

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

2000

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[CrossRef]

1999

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

1998

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

U. Gliese, Opt. Quantum Electron. 30, 1005 (1998).
[CrossRef]

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

Barry, L. P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

Chan, S. C.

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. accepted for publication.

Doft, F.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

Gliese, U.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

U. Gliese, Opt. Quantum Electron. 30, 1005 (1998).
[CrossRef]

Hwang, S. K.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[CrossRef]

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

Liu, H. F.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

Liu, J. M.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. accepted for publication.

Lowery, A. J.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Nørskov, S.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Novak, D.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

Simpson, T. B.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

Smith, G. H.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

Stubkjær, K. E.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Waterhouse, R. B.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Opt. Commun.

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[CrossRef]

Opt. Quantum Electron.

U. Gliese, Opt. Quantum Electron. 30, 1005 (1998).
[CrossRef]

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, Opt. Quantum Electron. 30, 1021 (1998).
[CrossRef]

Other

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. accepted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. ML, master laser; SL, slave laser; M, mirror; VA, variable attenuator; PBS, polarizing beam splitter; FR, Faraday rotator; HWP, half-wave plate; PD, photodiode; MIX, mixer; PG, pattern generator; PSA, power spectrum analyzer: OSC, digital sampling oscilloscope; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Optical spectrum of the slave laser locked by the master into P1 oscillation. The sidebands separated by 15.90 GHz from the injection are due to the dynamical oscillation. (Resolution bandwidth, 900 MHz .)

Fig. 3
Fig. 3

Power spectrum of the slave laser. The dark curve is obtained from the steady-state period-one oscillation under constant injection. The gray curve is obtained from the frequency-modulated period-one oscillation under AM injection. (Resolution bandwidth, 3 MHz .)

Fig. 4
Fig. 4

Eye diagrams of (a) the variation of the optical injection intensity from the master laser under AM, and (b) the demodulated FM signal of the microwave generated by the slave laser.

Fig. 5
Fig. 5

BER as a function of the signal peak-to-peak voltage. Closed circles, input AM signal after PD2. Open circles, demodulated FM signal for the original P1 state. Gray points, demodulated FM signal for other P1 states. The relative injection power (normalized to the original P1 state), injection detuning (GHz), and P1 frequency (GHz) are, respectively, open circles (1, 3.7, 15.9), dark triangles (1, 7.1, 17.2), light triangles (1, 0.8 , 14.6), dark squares (1.7, 3.7, 17.4), and light squares (0.5, 3.7, 12.8).

Metrics