Abstract

Transverse-periodic-oriented nematic liquid crystals (LCs) are a special type of optical axis grating that are capable of very high efficiency diffraction (theoretically, 100%) in thin layers of materials with thickness comparable to the radiation wavelength. In particular, they fully diffract linearly polarized input beam into circularly polarized +1st and 1st diffraction orders. We experimentally demonstrate switching between diffraction orders of such gratings when the polarization of the incident beam changes from right-circular to left-circular and vice versa with the aid of an electrically controlled LC phase retarder. Such a setup in which the diffraction efficiency and direction are controlled externally, without application of an electric field to the transverse-periodic grating, provides additional control opportunities and does not compromise the quality of the grating. The grating used in the experiment was 1.5μm thick and had a period of 4μm. The contrast ratio of switching between the +1st and 1st orders was as high as 267:1 for a HeNe laser beam with a switching time of 6.6ms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
    [CrossRef]
  2. B. Ya. Zeldovich and N. V. Tabirian, 'Devices for displaying visual information,' Disclosure (School of Optics/CREOL, 2000).
  3. H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, in Optics in the Southeast, 2003, p. PSE 02.
  4. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
    [CrossRef]
  5. J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
    [CrossRef]
  6. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
    [CrossRef]
  7. T. Ya. Marusii and Yu. A. Reznikov, Mol. Mater. 3, 161 (1993).
  8. N. Tabiryan, U. Hrozhyk, and S. Serak, Phys. Rev. Lett. 93, 113901 (2004).
    [CrossRef] [PubMed]
  9. N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, J. Opt. Soc. Am. B 20, 538 (2003).
    [CrossRef]
  10. K. E. Asatryan and N. V. Tabiryan, Sov. Phys. Tech. Phys. 33, 934 (1988).

2006 (1)

H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

2005 (2)

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
[CrossRef]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

2004 (2)

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, Phys. Rev. Lett. 93, 113901 (2004).
[CrossRef] [PubMed]

2003 (1)

1993 (1)

T. Ya. Marusii and Yu. A. Reznikov, Mol. Mater. 3, 161 (1993).

1988 (1)

K. E. Asatryan and N. V. Tabiryan, Sov. Phys. Tech. Phys. 33, 934 (1988).

Asatryan, K. E.

K. E. Asatryan and N. V. Tabiryan, Sov. Phys. Tech. Phys. 33, 934 (1988).

Biener, G.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
[CrossRef]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Grozhik, V. A.

Hasman, E.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
[CrossRef]

Hrozhyk, U.

N. Tabiryan, U. Hrozhyk, and S. Serak, Phys. Rev. Lett. 93, 113901 (2004).
[CrossRef] [PubMed]

Kleiner, V.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
[CrossRef]

Marusii, T. Ya.

T. Ya. Marusii and Yu. A. Reznikov, Mol. Mater. 3, 161 (1993).

Niv, A.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
[CrossRef]

Park, B.

H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Park, J. B.

H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, in Optics in the Southeast, 2003, p. PSE 02.

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Reznikov, Yu. A.

T. Ya. Marusii and Yu. A. Reznikov, Mol. Mater. 3, 161 (1993).

Sarkissian, H.

H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, in Optics in the Southeast, 2003, p. PSE 02.

Serak, S.

N. Tabiryan, U. Hrozhyk, and S. Serak, Phys. Rev. Lett. 93, 113901 (2004).
[CrossRef] [PubMed]

Serak, S. V.

Tabirian, N.

H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Tabirian, N. V.

H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, in Optics in the Southeast, 2003, p. PSE 02.

B. Ya. Zeldovich and N. V. Tabirian, 'Devices for displaying visual information,' Disclosure (School of Optics/CREOL, 2000).

Tabiryan, N.

N. Tabiryan, U. Hrozhyk, and S. Serak, Phys. Rev. Lett. 93, 113901 (2004).
[CrossRef] [PubMed]

Tabiryan, N. V.

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, J. Opt. Soc. Am. B 20, 538 (2003).
[CrossRef]

K. E. Asatryan and N. V. Tabiryan, Sov. Phys. Tech. Phys. 33, 934 (1988).

Xie, Y.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Zeldovich, B.

H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Zeldovich, B. Ya.

H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, in Optics in the Southeast, 2003, p. PSE 02.

B. Ya. Zeldovich and N. V. Tabirian, 'Devices for displaying visual information,' Disclosure (School of Optics/CREOL, 2000).

Appl. Phys. Lett. (1)

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

H. Sarkissian, N. Tabirian, B. Park, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Mol. Mater. (1)

T. Ya. Marusii and Yu. A. Reznikov, Mol. Mater. 3, 161 (1993).

Opt. Commun. (1)

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Commun. 251, 306 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

N. Tabiryan, U. Hrozhyk, and S. Serak, Phys. Rev. Lett. 93, 113901 (2004).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys. (1)

K. E. Asatryan and N. V. Tabiryan, Sov. Phys. Tech. Phys. 33, 934 (1988).

Other (2)

B. Ya. Zeldovich and N. V. Tabirian, 'Devices for displaying visual information,' Disclosure (School of Optics/CREOL, 2000).

H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, in Optics in the Southeast, 2003, p. PSE 02.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic structure of the planar transverse-periodic nematic cell. Left, top view; right, side view. The director rotates in the transverse direction with a fixed rate. This structure can be made using anchoring on top and bottom surfaces (see below, and also Refs. [1, 3, 5, 6]), and proper anchoring can be achieved with the photoalignment technique.[5, 6, 7]

Fig. 2
Fig. 2

Grating observed under an Olympus inverted polarization microscope IX51. The image was taken with a 100 × microscope objective.

Fig. 3
Fig. 3

Experimental setup for observation and measurements of the diffraction of a He Ne laser beam on a transverse-periodic LC structure. The left-circularly-polarized incident laser beam diffracts into 1 st order on the screen, and right-circularly-polarized laser beam diffracts into + 1 st order on the screen.

Fig. 4
Fig. 4

Photos of the laser beam and diffraction orders: (a) laser beam on the screen without the grating, (b) diffraction of a linearly polarized laser beam on the grating (voltage is 0 V p - p ), (c) diffraction of right-circularly-polarized laser beam (voltage is 5.2 V p - p ), (d) diffraction of left-circularly-polarized laser beam (voltage is 8.6 V p - p ).

Fig. 5
Fig. 5

Transmission dynamics of the 1 st and + 1 st order diffracted beams for two values of applied voltage: 5.2 and 8.6 V . Line 1, 1 st order when voltage V is 5.2 V ; line 2, 1 st order when V = 8.6 V ; line 3, + 1 st order when V = 5.2 V ; line 4, + 1 st order when V = 8.6 V .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n = { cos ( q x ) , sin ( q x ) , 0 } , q = 2 π Λ .

Metrics