Abstract

We demonstrate narrow-linewidth near-degenerate optical parametric generation in reverse-proton-exchange lithium niobate waveguides with quasi-group-velocity-matching, which is realized by using wavelength-selective directional couplers and tight-radius bends. With appropriate designs for 1.6ps long pump pulses at 785.1nm we obtained near-degenerate signal (idler) pulses with a time–bandwidth product as low as 1.1, compared with 10.5 for conventional devices without quasi-group-velocity-matching. This improvement in the temporal property is a result of both a pulse compression effect and a filter effect coming from our scheme of quasi-group-velocity-matching.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, J. Opt. Soc. Am. B 21, 1397 (2004).
    [CrossRef]
  2. P. Di Trapani, A. Andreoni, C. Solcia, P. Foggi, R. Danielius, A. Dubietis, and A. Piskarskas, J. Opt. Soc. Am. B 12, 2237 (1995).
    [CrossRef]
  3. A. V. Smith, Opt. Lett. 26, 719 (2001).
    [CrossRef]
  4. J. Huang, J. R. Kurz, C. Langrock, A. M. Schober, and M. M. Fejer, Opt. Lett. 29, 2482 (2004).
    [CrossRef] [PubMed]
  5. R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, in 2003 IEEE LEOS Annual Meeting Conference (IEEE, 2003), Vol. 1, pp. 338-339.
    [CrossRef]
  6. M. H. Chou, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 794 (1996).
    [CrossRef] [PubMed]
  7. L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
    [CrossRef]
  8. D. Marcuse, IEEE J. Quantum Electron. 18, 393 (1982).
    [CrossRef]

2004 (2)

2001 (1)

1996 (2)

M. H. Chou, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 794 (1996).
[CrossRef] [PubMed]

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

1995 (1)

1982 (1)

D. Marcuse, IEEE J. Quantum Electron. 18, 393 (1982).
[CrossRef]

Andreoni, A.

Arbore, M. A.

Barry, L. P.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

Bollond, P. G.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

Chou, M. H.

Danielius, R.

Di Trapani, P.

Dubietis, A.

Dudley, J. M.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

Fejer, M. M.

Foggi, P.

Harvey, J. D.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

Huang, J.

Kurz, J. R.

Langrock, C.

Leonhardt, R.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

Marcuse, D.

D. Marcuse, IEEE J. Quantum Electron. 18, 393 (1982).
[CrossRef]

Parameswaran, K. R.

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, in 2003 IEEE LEOS Annual Meeting Conference (IEEE, 2003), Vol. 1, pp. 338-339.
[CrossRef]

Piskarskas, A.

Roussev, R.

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, in 2003 IEEE LEOS Annual Meeting Conference (IEEE, 2003), Vol. 1, pp. 338-339.
[CrossRef]

Roussev, R. V.

Schober, A. M.

Smith, A. V.

Solcia, C.

Tian, J.

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, in 2003 IEEE LEOS Annual Meeting Conference (IEEE, 2003), Vol. 1, pp. 338-339.
[CrossRef]

Xie, X.

Xie, X. P.

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, in 2003 IEEE LEOS Annual Meeting Conference (IEEE, 2003), Vol. 1, pp. 338-339.
[CrossRef]

Electron. Lett. (1)

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, Electron. Lett. 32, 1922 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Marcuse, IEEE J. Quantum Electron. 18, 393 (1982).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Other (1)

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, in 2003 IEEE LEOS Annual Meeting Conference (IEEE, 2003), Vol. 1, pp. 338-339.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Near-degenerate OPG using waveguides with one QGVM section, designed for a pump wave near 785 nm and signal and idler waves near 1570 nm . L g is the length of each section of QPM gratings, L DC is the length of each directional coupler, and L 1 is the length of the straight waveguide between the two directional couplers.

Fig. 2
Fig. 2

(a) Autocorrelation traces and power spectra of the output from a device with four QGVM sections; (b) those from a conventional device without QGVM. Solid curves, device temperature of 130 ° C ; dotted curves, 121.3 ° C . The pump wavelength was 785.1 nm for all. The total length of QPM gratings was 24 mm in both cases. The pulse lengths and bandwidths in the figures are FWHM widths.

Fig. 3
Fig. 3

Power spectra of the output from a waveguide with one QGVM section. The total length of QPM gratings was 9.6 mm . The device temperature was fixed at 130 ° C in (a). The pump wavelength was fixed at 781.2 nm in (b). The baselines of the curves in (b) indicate the device temperature, which can be read from the vertical axis. All traces are normalized to their maxima. The bandwidths shown in the figures are FWHM widths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L 2 L 1 = ( n g p n g s , i 1 ) ( r L g + L 1 + 2 L DC ) .
I s = I s 0 { cosh 2 α L g + [ Δ k ( 2 α ) ] 2 sinh 2 α L g } + I i 0 ( Γ α ) 2 sinh 2 α L g + 2 ( Γ α ) sinh α L g I s 0 I i 0 { cosh α L g cos ϕ + [ Δ k ( 2 α ) ] sinh α L g sin ϕ } ,
α = Γ 2 Δ k 2 4 , Δ k = k p k s k i 2 π Λ .

Metrics