Abstract

We numerically demonstrate the feasibility of constructing an all-optical pulse restorer by using a microresonator structure with Kerr nonlinearity. We obtain a clear nonlinear power transfer curve capable of improving the signal-to-noise ratio and reducing the bit error rate for digital signals. Since we take advantage of field enhancement at resonance, this integrated reshaper could be much smaller than other gates based on nonlinear fibers or waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev, in 24th European Conference on Optical Communication (IEEE, 1998), p. 475.
  2. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, J. Lightwave Technol. 21, 2779 (2003).
    [CrossRef]
  3. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, Opt. Lett. 30, 2900 (2005).
    [CrossRef] [PubMed]
  4. T. A. Ibrahim, V. Van, and P. T. Ho, Opt. Lett. 27, 803 (2002).
    [CrossRef]
  5. J. E. Heebner and R. W. Boyd, in Proc. SPIE 4969, 185 (2003).
    [CrossRef]
  6. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
    [CrossRef]
  7. S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
    [CrossRef]
  8. J. K. S. Poon, J. Sheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, Opt. Express 12, 90 (2004).
    [CrossRef] [PubMed]
  9. J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
    [CrossRef]
  10. A. Yariv, Electron. Lett. 36, 321 (2000).
    [CrossRef]
  11. Y. Dumeige and P. Féron, Phys. Rev. E 72, 066609 (2005).
    [CrossRef]
  12. B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
    [CrossRef]
  13. B. Luther-Davies and G. I. Stegeman, in Spatial Solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 19-35.
  14. A. Melloni and M. Martinelli, J. Lightwave Technol. 20, 296 (2002).
    [CrossRef]
  15. Y. Chen and S. Blair, Opt. Express 12, 3353 (2004).
    [CrossRef] [PubMed]
  16. S. Pereira, P. Chak, and J. E. Sipe, J. Opt. Soc. Am. B 19, 2191 (2002).
    [CrossRef]
  17. A. K. Bhowmik and M. Thakur, Opt. Lett. 26, 902 (2001).
    [CrossRef]
  18. S. Pereira, P. Chak, J. E. Sipe, L. Tkeshelashvili, and K. Busch, Photonics Nanostruct. Fundam. Appl. 2, 181 (2004).
    [CrossRef]
  19. A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
    [CrossRef]
  20. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, Opt. Express 14, 1737 (2006).
    [CrossRef] [PubMed]
  21. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, Opt. Lett. 31, 456 (2006).
    [CrossRef] [PubMed]

2006

2005

Y. Dumeige and P. Féron, Phys. Rev. E 72, 066609 (2005).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, Opt. Lett. 30, 2900 (2005).
[CrossRef] [PubMed]

S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
[CrossRef]

2004

2003

A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, J. Lightwave Technol. 21, 2779 (2003).
[CrossRef]

J. E. Heebner and R. W. Boyd, in Proc. SPIE 4969, 185 (2003).
[CrossRef]

2002

2001

2000

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

1994

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

1991

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Baker, G.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Balmefrezol, E.

Bhowmik, A. K.

Blair, S.

Boyd, R. W.

Bramerie, L.

Brindel, P.

Busch, K.

S. Pereira, P. Chak, J. E. Sipe, L. Tkeshelashvili, and K. Busch, Photonics Nanostruct. Fundam. Appl. 2, 181 (2004).
[CrossRef]

Cha, M.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Chak, P.

Chartier, T.

Chen, Y.

Danckaert, J.

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

DeRose, G. A.

Dumeige, Y.

Y. Dumeige and P. Féron, Phys. Rev. E 72, 066609 (2005).
[CrossRef]

Eggleton, B. J.

Etemad, S.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Féron, P.

Y. Dumeige and P. Féron, Phys. Rev. E 72, 066609 (2005).
[CrossRef]

Fobelets, K.

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Fu, L.

Gay, M.

Heebner, J. E.

Ho, P. T.

Huang, Y.

Ibrahim, T. A.

Joindot, M.

Kang, J. U.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Lavigne, B.

Lawrence, B. L.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Leclerc, O.

Littler, I. C. M.

Luther-Davies, B.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, Opt. Lett. 30, 2900 (2005).
[CrossRef] [PubMed]

B. Luther-Davies and G. I. Stegeman, in Spatial Solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 19-35.

Mamyshev, P. V.

P. V. Mamyshev, in 24th European Conference on Optical Communication (IEEE, 1998), p. 475.

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

A. Melloni and M. Martinelli, J. Lightwave Technol. 20, 296 (2002).
[CrossRef]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

A. Melloni and M. Martinelli, J. Lightwave Technol. 20, 296 (2002).
[CrossRef]

Meth, J.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Mikroulis, S.

S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
[CrossRef]

Mookherjea, S.

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

Moss, D. J.

Nguyen, T. N.

Paloczi, G. T.

Pereira, S.

Pierre, L.

Poon, J. K. S.

Reinisch, R.

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Rochette, M.

Roditi, E.

S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
[CrossRef]

Rouvillain, D.

Ruan, Y.

Seguineau, F.

Sheuer, J.

Shokooh-Saremi, M.

Simon, J. C.

Simos, H.

S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
[CrossRef]

Sipe, J. E.

Stegeman, G.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Stegeman, G. I.

B. Luther-Davies and G. I. Stegeman, in Spatial Solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 19-35.

Syvridis, D.

S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
[CrossRef]

Ta'eed, V. G.

Thakur, M.

Tkeshelashvili, L.

S. Pereira, P. Chak, J. E. Sipe, L. Tkeshelashvili, and K. Busch, Photonics Nanostruct. Fundam. Appl. 2, 181 (2004).
[CrossRef]

Torruellas, W.

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

Van, V.

Veretennicoff, I.

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Vitrant, G.

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Yariv, A.

Zhu, L.

Electron. Lett.

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, Electron. Lett. 30, 447 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, IEEE Photon. Technol. Lett. 17, 1878 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. Melloni, F. Morichetti, and M. Martinelli, Opt. Quantum Electron. 35, 365 (2003).
[CrossRef]

Photonics Nanostruct. Fundam. Appl.

S. Pereira, P. Chak, J. E. Sipe, L. Tkeshelashvili, and K. Busch, Photonics Nanostruct. Fundam. Appl. 2, 181 (2004).
[CrossRef]

Phys. Rev. B

J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Phys. Rev. E

Y. Dumeige and P. Féron, Phys. Rev. E 72, 066609 (2005).
[CrossRef]

Proc. SPIE

J. E. Heebner and R. W. Boyd, in Proc. SPIE 4969, 185 (2003).
[CrossRef]

Other

P. V. Mamyshev, in 24th European Conference on Optical Communication (IEEE, 1998), p. 475.

B. Luther-Davies and G. I. Stegeman, in Spatial Solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 19-35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two chains of three microring resonators, waveguide side-coupled with instantaneous Kerr nonlinearity. For the first set, forward-propagating field envelopes are represented.

Fig. 2
Fig. 2

Linear transmission spectra T = b 4 E in 2 = E out b 0 2 and R = b 0 E in 2 for one set of three resonators.

Fig. 3
Fig. 3

Nonlinear transfer curve for 2 × 3 microring resonators. The intensities are defined by I in = 1 2 ϵ 0 c n E in 2 and I out = 1 2 ϵ 0 c n E out 2 . The arrow indicates the input value chosen in Fig. 4.

Fig. 4
Fig. 4

Intensity pulse temporal profile after propagation in the whole structure for different pulse durations. The normalized input intensity used is n 2 I in = 5 × 10 4 . The linear losses are taken equal to α = 5 dB cm and the nonlinear losses equal to α 2 = 0.5 cm GW .

Fig. 5
Fig. 5

(a) Noisy data stream at the input port of the device. (b) Regenerated optical signal at the output port. We also took into account losses such as α = 5 dB cm and α 2 = 0.5 cm GW . The normalized reference input intensity (equal to 1) corresponds to n 2 I in = 5 × 10 4 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x i = ( a i b i ) , x i = ( a i b i ) .
x i = 1 κ i * [ t i * 1 κ i κ i * + t i * t i t i ] x i + 1 .
a i = b i exp ( j β L ) exp ( j γ b i 2 ) ,
b i = a i exp ( j β L ) exp ( j γ a i 2 A ) ,
γ = π n 2 ϵ 0 c n λ 0 A 1 α .
E i ( s , t + δ t ) = E i ( s δ s , t ) exp ( j β δ s ) × exp [ ( j 2 π λ 0 n 2 + α 2 ) I i ( s δ s , t ) δ s ] ,

Metrics