Abstract

We demonstrate a simple method for monitoring all-optical poling in real time. The poling pattern created by the writing beam at the fundamental frequency and the seed beam at the second-harmonic frequency is reconstructed by two-beam second-harmonic generation because of the writing beam and an additional probe beam at the fundamental frequency. When the probe beam is sufficiently weak, it does not distort the poling process. The method provides a significantly stronger signal than monitoring based on a probe beam alone.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Österberg and W. Margulis, Opt. Lett. 11, 516 (1986).
    [CrossRef] [PubMed]
  2. R. H. Stolen and H. W. K. Tom, Opt. Lett. 12, 585 (1987).
    [CrossRef] [PubMed]
  3. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, Opt. Lett. 18, 941 (1993).
    [CrossRef] [PubMed]
  4. C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, Nonlinear Opt. 9, 339 (1995).
  5. C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
    [CrossRef] [PubMed]
  6. S. Brasselet and J. Zyss, Opt. Lett. 22, 1464 (1997).
    [CrossRef]
  7. N. B. Baranova and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 8, 27 (1991).
    [CrossRef]
  8. V. M. Churikov, M. F. Hung, and C. C. Hsu, Opt. Lett. 25, 960 (2000).
    [CrossRef]
  9. A. Apostoluk, D. Chapron, G. Gadret, B. Sahraoui, J. M. Nunzi, C. Fiorini-Debuisschert, and P. Raimond, Opt. Lett. 27, 2028 (2002).
    [CrossRef]
  10. N. Tsutsumi and T. Shingu, Chem. Phys. Lett. 403, 420 (2005).
    [CrossRef]
  11. C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
    [CrossRef]

2005

N. Tsutsumi and T. Shingu, Chem. Phys. Lett. 403, 420 (2005).
[CrossRef]

2002

2000

1997

1995

C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, Nonlinear Opt. 9, 339 (1995).

C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
[CrossRef] [PubMed]

1993

1991

1987

1986

Apostoluk, A.

Baranova, N. B.

Brasselet, S.

Chapron, D.

Charra, F.

Churikov, V. M.

Fiorini, C.

Fiorini-Debuisschert, C.

Gadret, G.

Hsu, C. C.

Hung, M. F.

Idiart, E.

Kajzar, F.

Margulis, W.

Nunzi, J. M.

Österberg, U.

Raimond, P.

Sahraoui, B.

Samuel, I. D. W.

Shingu, T.

N. Tsutsumi and T. Shingu, Chem. Phys. Lett. 403, 420 (2005).
[CrossRef]

Stolen, R. H.

Tom, H. W. K.

Tsutsumi, N.

N. Tsutsumi and T. Shingu, Chem. Phys. Lett. 403, 420 (2005).
[CrossRef]

Zel'dovich, B. Ya.

Zyss, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. Abbreviations: L, 50 cm lens; BS, beam splitter; Q, quartz crystal for generating the seeding beam; M, mirror; HWP, half-wave plate; Pol, polarizer; F, IR pass filter; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Real-time growth dynamics of the all-optical poling signal. The fitting function is of the form f ( t ) = A 1 [ 1 exp ( t τ 1 ) ] + A 2 [ 1 exp ( t τ 2 ) ] .

Fig. 3
Fig. 3

Comparison of the poling dynamics for a, weak probe and b, strong probe when the probe beam is applied on the sample during the whole measurement (squares) and when it is applied for a short time at 3 min intervals to obtain measurement points (triangles). The curves are normalized to eliminate the point-to-point variations in the signal level due to sample inhomogeneities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) ( A ω 2 ) * A 2 ω exp ( i Δ k 1 r ) + c.c. ,
P 2 ω = ( A ω 2 ) * A ω A ω A 2 ω exp [ i ( Δ k 1 + k ω + k ω ) r ] + A ω 3 A ω A 2 ω * exp [ i ( Δ k 1 + k ω + k ω ) r ] .
P 2 ω , 1 = A ω 3 A ω A 2 ω * exp [ i ( Δ k 1 + k ω + k ω ) r ] ,
P 2 ω , 2 = A ω * ( A ω ) 2 ( A ω ) * A 2 ω exp [ i ( Δ k 1 + k ω + k ω ) r ] .

Metrics