Abstract

A AgSiO2 multilayer imaging structure is shown to have subwavelength performance. Loss is the major limitation, and selection of low-loss materials and suitable operating wavelengths has a significant impact on performance. The influence of the variables is presented, and vortices are shown to exist.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  2. M. Yang and K. J. Webb, Opt. Lett. 20, 2382 (2005).
    [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
    [CrossRef] [PubMed]
  5. R. J. Blaikie and D. Melville, J. Opt. A 7, S176 (2005).
    [CrossRef]
  6. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).
  7. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2005 (3)

M. Yang and K. J. Webb, Opt. Lett. 20, 2382 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

R. J. Blaikie and D. Melville, J. Opt. A 7, S176 (2005).
[CrossRef]

2003 (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Blaikie, R. J.

R. J. Blaikie and D. Melville, J. Opt. A 7, S176 (2005).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Melville, D.

R. J. Blaikie and D. Melville, J. Opt. A 7, S176 (2005).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Webb, K. J.

M. Yang and K. J. Webb, Opt. Lett. 20, 2382 (2005).
[CrossRef]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).

Yang, M.

M. Yang and K. J. Webb, Opt. Lett. 20, 2382 (2005).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mol. Spectrosc. 50, 1419 (2003).

J. Opt. A (1)

R. J. Blaikie and D. Melville, J. Opt. A 7, S176 (2005).
[CrossRef]

Opt. Lett. (1)

M. Yang and K. J. Webb, Opt. Lett. 20, 2382 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a three-layer slab structure. The gray area denotes Ag (layer thickness d ), and the white denotes Si O 2 (layer thickness d + ). A layer is defined as shown, with Ag placed at the center. The incident plane and the transmitted plane are noted.

Fig. 2
Fig. 2

Transmission spectrum for different numbers of layers of Ag Si O 2 in a 400 nm thick slab at (a) λ = 700 nm and (b) λ = 350 nm . The curves for 8 and 16 layers and the effective medium result are coincident in (b). The duty cycle is D = 0.1 , k 0 is the free-space wavenumber, and T is the transmission coefficient between the planes denoted in Fig. 1.

Fig. 3
Fig. 3

Transmission spectrum with varying duty cycle D for a 400 nm slab: (a) λ = 700 nm and (b) λ = 350 nm . Eight layers were used in the simulation.

Fig. 4
Fig. 4

Poynting vector at the transmission plane for λ = 700 nm . The slab thickness is 400 nm , and D = 0.1 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( k x ) = ( 1 r 2 ) exp ( i k z d ) 1 r 2 exp ( i 2 k z d ) ,

Metrics