Abstract

A theoretical scheme for a new surface plasmon-polariton (SPP) fiber sensor with a fiber Bragg grating imprinted into the fiber core for SPP excitation is presented for the first time to our knowledge. In our scheme the energy in the fiber core mode can be transferred to a SPP with high efficiency by means of a properly designed short-period fiber Bragg grating (SPG). Developed for the cylindrical (fiber) geometry, our scheme without loss of generality can be applied to a planar geometry. Our simulations are based on the coupled-mode method and are performed at telecommunications wavelengths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  2. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, J. Opt. Soc. Am. A 20, 1644 (2003).
    [CrossRef]
  3. C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, 1992).
  4. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  5. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  6. H. Khosravi, D. R. Tilley, and R. Loudon, J. Opt. Soc. Am. A 8, 112 (1991).
    [CrossRef]
  7. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
    [CrossRef]
  8. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  9. M. Harumoto, M. Shigehara, and H. Suganuma, J. Lightwave Technol. 20, 1027 (2002).
    [CrossRef]
  10. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  11. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

2003 (1)

2002 (1)

1997 (2)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
[CrossRef]

1991 (1)

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
[CrossRef]

Harumoto, M.

Kabashin, A. V.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Khosravi, H.

Loudon, R.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Luong, J. H. T.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Meunier, M.

Patskovsky, S.

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Shigehara, M.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Suganuma, H.

Tilley, D. R.

Tsao, C.

C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, 1992).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (3)

Other (6)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, 1992).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the suggested scheme. FM, fiber mode.

Fig. 2
Fig. 2

Plasmon-polariton propagation constant n p versus (a) the refractive index of the surrounding media, n s and (b) the metal layer thickness Δ.

Fig. 3
Fig. 3

Grating reflectivity versus the length, L, for Λ = 420 nm , GS = 4 × 10 4 , n s = 1.33 , and Δ = 10.0 nm .

Fig. 4
Fig. 4

Wavelength corresponding to the maximum grating reflectivity (70%) versus the refractive index of the surrounding media n s . See Table 1 for details.

Tables (1)

Tables Icon

Table 1 Wavelength Shift per 10 3 Change in Refractive Index n s (See Fig. 4)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ co - p + κ co - co 2 = 0 ,

Metrics