Abstract

The variance of nonlinear phase noise is analyzed by including the effect of intrachannel cross-phase modulation–induced nonlinear phase noise. Consistent with Ho and Wang [IEEE Photon. Technol. Lett. 17, 1426 (2005)] for a lightwave transmission system but contrary to the conclusions of both Kumar [Opt. Lett. 30, 3278 (2005)] and Green et al. [Opt. Lett. 28, 2455 (2003)] with different initial conditions, the variance of nonlinear phase noise does not decrease much with the increase of chromatic dispersion. The results are consistent with each other after a careful reexamination.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, J. Lightwave Technol. 23, 115 (2005).
    [CrossRef]
  2. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
  3. K.-P. Ho and H.-C. Wang, IEEE Photon. Technol. Lett. 17, 1426 (2005).
    [CrossRef]
  4. S. Kumar, Opt. Lett. 30, 3278 (2005).
    [CrossRef]
  5. A. G. Green, P. P. Mitra, and L. G. L. Wegener, Opt. Lett. 28, 2455 (2003).
    [CrossRef] [PubMed]
  6. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
    [CrossRef] [PubMed]
  7. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2000).
  8. D. O. Caplan and W. A. Atia, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MM2.
  9. W. A. Atia and R. S. Bondurant, in Proceedings of LEOS '99 (IEEE, 1999), paper TuM3.
  10. A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000).
    [CrossRef]

2005 (3)

2003 (1)

2000 (1)

A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000).
[CrossRef]

1990 (1)

Atia, W. A.

D. O. Caplan and W. A. Atia, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MM2.

W. A. Atia and R. S. Bondurant, in Proceedings of LEOS '99 (IEEE, 1999), paper TuM3.

Bondurant, R. S.

W. A. Atia and R. S. Bondurant, in Proceedings of LEOS '99 (IEEE, 1999), paper TuM3.

Caplan, D. O.

D. O. Caplan and W. A. Atia, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MM2.

Clausen, C. B.

A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000).
[CrossRef]

Gnauck, A. H.

Gordon, J. P.

Green, A. G.

Ho, K.-P.

K.-P. Ho and H.-C. Wang, IEEE Photon. Technol. Lett. 17, 1426 (2005).
[CrossRef]

K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).

Kumar, S.

Mecozzi, A.

A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000).
[CrossRef]

Mitra, P. P.

Mollenauer, L. F.

Proakis, J. G.

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2000).

Shtaif, M.

A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000).
[CrossRef]

Wang, H.-C.

K.-P. Ho and H.-C. Wang, IEEE Photon. Technol. Lett. 17, 1426 (2005).
[CrossRef]

Wegener, L. G. L.

Winzer, P. J.

IEEE Photon. Technol. Lett. (2)

K.-P. Ho and H.-C. Wang, IEEE Photon. Technol. Lett. 17, 1426 (2005).
[CrossRef]

A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (3)

Other (4)

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2000).

D. O. Caplan and W. A. Atia, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MM2.

W. A. Atia and R. S. Bondurant, in Proceedings of LEOS '99 (IEEE, 1999), paper TuM3.

K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Temporal profile of the STD of nonlinear phase noise σ nl ( t ) . The x-axis time is in picoseconds, and the y-axis is σ nl ( t ) in arbitrary linear units. Note that the x- and y-axes with different dispersion do not have the same units.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u ( z , t ) = A 0 T 0 [ T 0 2 j S ( z ) ] 1 2 exp { t 2 2 [ T 0 2 j S ( z ) ] } ,
Δ u n ( t ) = 2 j γ 0 L [ u ( z , t ) 2 n ( z , t ) ] h z ( t ) e α z d z ,
ϕ nl ( t ) = I { Δ u n ( t ) h o ( t ) } s ( 0 ) ,
σ nl 2 ( t ) = 4 γ 2 A 0 2 T 0 2 σ n 2 π + 0 L exp { t 2 j τ ( z ) 2 ω t + S ( z ) 2 ω 2 + 1 2 T 0 2 ω 2 [ τ ( z ) 2 + 2 j S ( z ) ] τ ( z ) 2 2 j S ( z ) + 2 T 0 2 α z } τ ( z ) 2 2 j S ( z ) + 2 T 0 2 d z 2 d ω ,

Metrics