Abstract

We investigate the thermal tuning properties of long period gratings (LPGs) in a fluid-filled photonic bandgap fiber (PBGF). The combination of strong, resonant waveguide dispersion, characteristic of all PBGF modes, and the large thermo-optic coefficients of fluids yields highly tunable grating resonances. We measure grating resonances in three transmission bands with large tuning coefficients of up to 1.58nm°C, which match numerical results. We derive an analytic model for the PBGF LPG tuning coefficient to show how it depends on both the shift of the transmission bands and the dispersion of the coupled modes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, Opt. Lett. 9, 177 (1984).
    [CrossRef] [PubMed]
  2. X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
    [CrossRef]
  3. Z. Wang and S. Ramachandran, Opt. Lett. 28, 2458 (2003).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, J. Lightwave Technol. 18, 1084 (2000).
    [CrossRef]
  5. J. Jasapara, T. H. Her, R. T. Bise, R. S. Windeler, and D. J. DiGiovanni, J. Opt. Soc. Am. B 20, 1611 (2003).
    [CrossRef]
  6. N. M. Litchinitser, S. C. Dunn, P. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 12, 1540 (2004).
    [CrossRef] [PubMed]
  7. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, Opt. Express 14, 3007 (2006).
    [CrossRef] [PubMed]
  8. X. W. Shu, L. Zhang, and I. Bennion, J. Lightwave Technol. 20, 255 (2002).
    [CrossRef]
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  10. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, Opt. Express 12, 69 (2004).
    [CrossRef] [PubMed]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  12. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, Opt. Express 13, 8452 (2005).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (2)

2003 (2)

2002 (2)

2001 (1)

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

2000 (1)

1984 (1)

Allsop, T.

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

Bennion, I.

X. W. Shu, L. Zhang, and I. Bennion, J. Lightwave Technol. 20, 255 (2002).
[CrossRef]

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

Bigot, L.

Bird, D. M.

Birks, T. A.

Bise, R. T.

Botten, L. C.

Bouwmans, G.

Brooks, J. L.

Burdge, G. L.

de Sterke, C. M.

DiGiovanni, D. J.

Douay, M.

Dunn, S. C.

Eggleton, B. J.

Gwandu, B.

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

Hedley, T. D.

Her, T. H.

Jasapara, J.

Kerbage, C.

Kuhlmey, B. T.

Litchinitser, N. M.

Lopez, F.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Mägi, E. C.

Maystre, D.

McPhedran, R. C.

Moore, E. D.

Pottage, J. M.

Provino, L.

Quiquempois, Y.

Ramachandran, S.

Renversez, G.

Russell, P. St. J.

Shaw, H. J.

Shu, X. W.

X. W. Shu, L. Zhang, and I. Bennion, J. Lightwave Technol. 20, 255 (2002).
[CrossRef]

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Steinvurzel, P.

Wang, Z.

Westbrook, P. S.

White, C. A.

White, T. P.

Windeler, R. S.

Youngquist, R. C.

Zhang, L.

X. W. Shu, L. Zhang, and I. Bennion, J. Lightwave Technol. 20, 255 (2002).
[CrossRef]

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. W. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (2)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Inset, schematic diagram of MOF geometry. In PBGFs, n 2 > n 1 and the transmission spectrum consists of discrete frequency bands (left axis) with strongly dispersive modes (solid lines, right axis). If n 2 < n 1 , the fundamental mode is effectively lossless and the modal dispersion is weaker (dashed curves, right axis). (b) Shift of PMCs as index contrast is reduced in PBGF (dash–dotted and dotted curves) and index-guided MOF (solid and dashed curves). The initial dielectric contrast n 2 2 n 1 2 = 0.4575 , and the change in contrast of 0.0319 is the same in both cases.

Fig. 2
Fig. 2

(a) Transmission spectrum of LPG in PBGF measured at 20.8 ° C , 40.0 ° C , and 60.0 ° C . The dashed curve in the top panel shows PBGF transmission with no LPG. (b) Center wavelength of the four LPG resonances measured as a function of temperature (scatter plots), linear fit to measurement (solid lines), and simulated temperature dependence of resonances (dashed lines).

Fig. 3
Fig. 3

Variation of ξ LPG as a function of V after Eq. (4) (solid curves) and calculated from numerical simulation alone (dashed curves) at T = 40 ° C . The two sets of lines in the range V = 5.5 6.78 correspond to different mode pairs. Squares indicate experimental measurement.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ W 2 ( V ) Δ W 2 V = V 0 + ( V V 0 ) ( Δ W 2 ) V V = V 0
[ ( 1 + n 2 0 ξ 2 ( T T 0 ) n 2 0 2 n 1 0 2 ) λ 0 λ + 1 ] ( Δ W 2 + Δ W g 2 ) V = V 0 ,
Δ W 2 = ( π d ) 2 ( n eff fund + n eff HOM ) λ Λ 2 ( π d ) 2 n eff fund λ Λ .
ξ LPG = λ 0 n 2 0 ξ 2 n 2 0 2 n 1 0 2 [ 1 + ( n eff fund ) 2 ( n eff HOM ) 2 ( n g fund ) 2 ( n g HOM ) 2 ] ,

Metrics