Abstract

We investigate the thermal tuning properties of long period gratings (LPGs) in a fluid-filled photonic bandgap fiber (PBGF). The combination of strong, resonant waveguide dispersion, characteristic of all PBGF modes, and the large thermo-optic coefficients of fluids yields highly tunable grating resonances. We measure grating resonances in three transmission bands with large tuning coefficients of up to 1.58nm°C, which match numerical results. We derive an analytic model for the PBGF LPG tuning coefficient to show how it depends on both the shift of the transmission bands and the dispersion of the coupled modes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription