Abstract

We demonstrate three-dimensional trapping and orientation of individual Au nanorods by using laser light slightly detuned from their longitudinal plasmon mode. Detuning to the long-wavelength side of the resonance allows stable trapping for several minutes, with an exponential dependence of trapping time on laser power (consistent with a Kramer’s escape process). Detuning to the short-wavelength side causes repulsion of the rods from the laser focus. Alignment of the long axis of the rods with the trapping laser polarization is observed as a suppression of rotational diffusion about the short axis.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, Nature (London) 424, 810 (2003).
    [CrossRef]
  2. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
    [CrossRef] [PubMed]
  3. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
    [CrossRef] [PubMed]
  4. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
    [CrossRef]
  5. J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
    [CrossRef]
  6. M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
    [CrossRef]
  7. T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057 403 (2003).
    [CrossRef]
  8. M. Pelton, Phys. Rev. Lett. 92, 89701 (2004).
    [CrossRef]
  9. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  10. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).
  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  12. J. R. Arias-González and M. Nieto-Vesparinas, J. Opt. Soc. Am. A 20, 1201 (2003).
    [CrossRef]
  13. B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).
    [CrossRef]
  14. M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 109, 22 192 (2005).
  15. R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).
  16. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
    [CrossRef] [PubMed]
  17. R.Rigler and E.S.Elson, eds., Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001).
    [CrossRef]
  18. R. Vasanthi, S. Ravichandran, and B. Bagchi, J. Phys. Chem. 114, 7989 (2001).
    [CrossRef]
  19. S. H. Chung and R. A. Kennedy, J. Neurosci. Methods 40, 71 (1991).
    [CrossRef] [PubMed]
  20. G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev. Lett. 93, 260 601 (2004).
    [CrossRef]
  21. A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
    [CrossRef] [PubMed]
  22. M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
    [CrossRef]
  23. J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985).
    [CrossRef]

2005 (5)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 109, 22 192 (2005).

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
[CrossRef] [PubMed]

A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
[CrossRef] [PubMed]

2004 (4)

M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
[CrossRef]

G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev. Lett. 93, 260 601 (2004).
[CrossRef]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

M. Pelton, Phys. Rev. Lett. 92, 89701 (2004).
[CrossRef]

2003 (4)

J. R. Arias-González and M. Nieto-Vesparinas, J. Opt. Soc. Am. A 20, 1201 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).
[CrossRef]

T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057 403 (2003).
[CrossRef]

D. G. Grier, Nature (London) 424, 810 (2003).
[CrossRef]

2001 (1)

R. Vasanthi, S. Ravichandran, and B. Bagchi, J. Phys. Chem. 114, 7989 (2001).
[CrossRef]

1998 (1)

M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
[CrossRef]

1994 (1)

1991 (1)

S. H. Chung and R. A. Kennedy, J. Neurosci. Methods 40, 71 (1991).
[CrossRef] [PubMed]

1985 (1)

1980 (1)

J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Arias-González, J. R.

Ashkin, A.

J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Bagchi, B.

R. Vasanthi, S. Ravichandran, and B. Bagchi, J. Phys. Chem. 114, 7989 (2001).
[CrossRef]

Balasbramanian, S.

M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Block, S. M.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
[CrossRef] [PubMed]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
[CrossRef] [PubMed]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
[CrossRef] [PubMed]

Chung, S. H.

S. H. Chung and R. A. Kennedy, J. Neurosci. Methods 40, 71 (1991).
[CrossRef] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).
[CrossRef]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
[CrossRef] [PubMed]

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
[CrossRef] [PubMed]

Furey, W. S.

M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
[CrossRef]

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Gordon, J. P.

J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Grier, D. G.

M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
[CrossRef]

D. G. Grier, Nature (London) 424, 810 (2003).
[CrossRef]

Guyot-Sionnest, P.

M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 109, 22 192 (2005).

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
[CrossRef] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Hohlbein, J.

G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev. Lett. 93, 260 601 (2004).
[CrossRef]

Hübner, C. G.

G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev. Lett. 93, 260 601 (2004).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Iida, T.

T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057 403 (2003).
[CrossRef]

Ishihara, H.

T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057 403 (2003).
[CrossRef]

Jin, R.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).

Jureller, J. E.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).

Käll, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Kennedy, R. A.

S. H. Chung and R. A. Kennedy, J. Neurosci. Methods 40, 71 (1991).
[CrossRef] [PubMed]

Kim, H. Y.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).

Klenerman, D.

M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Ladavac, K.

M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Liu, M.

M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 109, 22 192 (2005).

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).

Nieto-Vesparinas, M.

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Osborne, M. A.

M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
[CrossRef]

Park, S.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).

Pelton, M.

M. Pelton, Phys. Rev. Lett. 92, 89701 (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
[CrossRef]

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Ravichandran, S.

R. Vasanthi, S. Ravichandran, and B. Bagchi, J. Phys. Chem. 114, 7989 (2001).
[CrossRef]

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
[CrossRef] [PubMed]

Scherer, N. F.

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Svoboda, K.

Vasanthi, R.

R. Vasanthi, S. Ravichandran, and B. Bagchi, J. Phys. Chem. 114, 7989 (2001).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Wessel, J.

Zumofen, G.

G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev. Lett. 93, 260 601 (2004).
[CrossRef]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, J. Am. Chem. Soc. 127, 12,482 (2005).

J. Neurosci. Methods (1)

S. H. Chung and R. A. Kennedy, J. Neurosci. Methods 40, 71 (1991).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

R. Vasanthi, S. Ravichandran, and B. Bagchi, J. Phys. Chem. 114, 7989 (2001).
[CrossRef]

J. Phys. Chem. B (2)

M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 109, 22 192 (2005).

M. A. Osborne, S. Balasbramanian, W. S. Furey, and D. Klenerman, J. Phys. Chem. B 102, 3160 (1998).
[CrossRef]

Nano Lett. (3)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5, 1139 (2005).
[CrossRef] [PubMed]

Nature (London) (1)

D. G. Grier, Nature (London) 424, 810 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Phys. Rev. E (1)

M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057 403 (2003).
[CrossRef]

M. Pelton, Phys. Rev. Lett. 92, 89701 (2004).
[CrossRef]

G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev. Lett. 93, 260 601 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. U.S.A. 102, (2005).
[CrossRef] [PubMed]

Other (4)

R.Rigler and E.S.Elson, eds., Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, Phys. Rev. B155419 (2006).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Measured extinction spectrum of the Au-nanorod ensemble (right) and collected two-photon fluorescence spectrum (left). The fluorescence is cut off at long wavelengths by optical filters. (b) Transmission-electron-microscope image of nanorods. (c) Time trace of two-photon-fluorescence from rods in an optical trap, for a trapping-laser wavelength of 850 nm and power of 140 mW . Photon counts have been grouped in 125 ms time bins.

Fig. 2
Fig. 2

Intensity autocorrelation functions of two-photon fluorescence from Au nanorods. To allow several trapping conditions to be compared, the measurement time was limited to 600 s. The curves are normalized for ease of comparison. (a) Freely diffusing rods, with a concentration such that no more than one rod is in the probe laser focus at a time. Points, measured values; line, theoretical fit. (b) Results for a fixed trapping-laser wavelength of 850 nm . To avoid accumulation of rods in the trap, the solution is diluted to the point where one rod diffuses into the trap approximately every 10 s; this results in a lower signal/noise ratio than for the untrapped rods. (c) Results for a fixed power of 120 mW .

Fig. 3
Fig. 3

Histograms of residence times of Au nanorods in the laser focus, binned logarithmically. The solid curves show the expected distribution if there were no optical trapping. (a) Results for a fixed trapping-laser wavelength of 850 nm . (b) Results for a fixed power of 120 mW .

Metrics