Abstract

A (5.1±0.5)nm thick film of high oscillator strength J-aggregated dye critically couples to a single dielectric mirror, absorbing more than 97% of incident λ=591nm wavelength light, corresponding to an effective absorption coefficient of (6.9±0.7)×106cm1 for (film thickness)/λ<1%.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984), p. 287.
  2. M. Vanburgel, D. A. Wiersma, and K. Duppen, J. Chem. Phys. 102, 20 (1995).
    [CrossRef]
  3. M. S. Bradley, J. R. Tischler, and V. Bulovic, Adv. Mater. (Weinheim, Germany) 17, 1881 (2005).
    [CrossRef]
  4. L. A. Coldren and S. W. Corzine, Diode Lasers, and Photonic Integrated Circuits (Wiley, 1995), p. 74.
  5. The refractive index of Ag at lambda=584 nm is derived from a fit to the ñ data published in H. J. Hagemann, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975).
  6. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
    [CrossRef]
  7. J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
    [CrossRef] [PubMed]

2005 (2)

M. S. Bradley, J. R. Tischler, and V. Bulovic, Adv. Mater. (Weinheim, Germany) 17, 1881 (2005).
[CrossRef]

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

2002 (1)

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
[CrossRef]

1995 (1)

M. Vanburgel, D. A. Wiersma, and K. Duppen, J. Chem. Phys. 102, 20 (1995).
[CrossRef]

1975 (1)

Bawendi, M. G.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
[CrossRef]

Bradley, M. S.

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulovic, Adv. Mater. (Weinheim, Germany) 17, 1881 (2005).
[CrossRef]

Bulovic, V.

M. S. Bradley, J. R. Tischler, and V. Bulovic, Adv. Mater. (Weinheim, Germany) 17, 1881 (2005).
[CrossRef]

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers, and Photonic Integrated Circuits (Wiley, 1995), p. 74.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers, and Photonic Integrated Circuits (Wiley, 1995), p. 74.

Duppen, K.

M. Vanburgel, D. A. Wiersma, and K. Duppen, J. Chem. Phys. 102, 20 (1995).
[CrossRef]

Gudat, W.

Hagemann, H. J.

Kunz, C.

Leatherdale, C. A.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
[CrossRef]

Mikulec, F. V.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
[CrossRef]

Nurmikko, A.

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

Ramo, S.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984), p. 287.

Song, J. H.

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

Tischler, J. R.

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulovic, Adv. Mater. (Weinheim, Germany) 17, 1881 (2005).
[CrossRef]

Van Duzer, T.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984), p. 287.

Vanburgel, M.

M. Vanburgel, D. A. Wiersma, and K. Duppen, J. Chem. Phys. 102, 20 (1995).
[CrossRef]

Whinnery, J. R.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984), p. 287.

Wiersma, D. A.

M. Vanburgel, D. A. Wiersma, and K. Duppen, J. Chem. Phys. 102, 20 (1995).
[CrossRef]

Woo, W.-K.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
[CrossRef]

Adv. Mater. (Weinheim, Germany) (1)

M. S. Bradley, J. R. Tischler, and V. Bulovic, Adv. Mater. (Weinheim, Germany) 17, 1881 (2005).
[CrossRef]

J. Chem. Phys. (2)

M. Vanburgel, D. A. Wiersma, and K. Duppen, J. Chem. Phys. 102, 20 (1995).
[CrossRef]

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Chem. Phys. 106, 7619 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. Lett. (1)

J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
[CrossRef] [PubMed]

Other (2)

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1984), p. 287.

L. A. Coldren and S. W. Corzine, Diode Lasers, and Photonic Integrated Circuits (Wiley, 1995), p. 74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Critically coupled resonator (CCR) structure. The device consists of a dielectric Bragg reflector (DBR), a transparent spacer layer, and a layer of J-aggregate cyanine dye. The DBR consists of 8.5 pairs of sputter-coated Ti O 2 and Al 2 O 3 layers, ending on Ti O 2 . The spacer layer is an additional sputter-coated layer of Al 2 O 3 . The J-aggregate layer consists of the cationic polyelectrolyte PDAC and the anionic cyanine dye TDBC deposited via sequential immersion into cationic and anionic aqueous solutions ( pH = 5.5 ) utilizing the technique described in Ref. [3]. Reflection and transmission measurements are made with light incident from the J-aggregate side of the device.

Fig. 2
Fig. 2

Measured reflectance and transmittance for the CCR with d s = ( 90 ± 1 ) nm , along with reflectance data for the neat PDAC/TDBC film and for the dielectric stack consisting of DBR with spacer layer. At λ c = 591 nm , the CCR absorbs 97% of the incident light.

Fig. 3
Fig. 3

Spectrally resolved real and imaginary components of the refractive index, ( n , κ ) , for a 5.1 ± 0.5 nm thick PDAC/TDBC film deposited on an Si O 2 substrate.[3] Inset, spectral data with fits calculated from ( n , κ ) values. κ peaks at λ = 593 nm , while reflectance peaks at λ = 595 nm .

Fig. 4
Fig. 4

Measured and calculated reflectance for the CCR device and DBR spacer stack. The calculated reflectance is based on the T-matrix formalism described in the text. The calculated fit matches the experimentally observed reflectance minimum at λ c = 591 nm .

Fig. 5
Fig. 5

Generalized formalism for critically coupling absorber layer of Fig. 1 as a function of absorber κ. Thicknesses for absorber and spacer layers are normalized to the CCR wavelength, λ c . The reflectance plotted is at λ c . For the spacer layer n s = 1.7 , and for the absorber the real component of the refractive index is set to n a ( 1.55 , 1.75 , 2.0 ) .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = [ r 12 ( 1 + r 23 r 34 e 2 j β 3 L 3 ) + e 2 j β 2 L 2 ( r 23 + r 34 e 2 j β 3 L 3 ) ] [ ( 1 + r 23 r 34 e 2 j β 3 L 3 ) + r 12 e 2 j β 2 L 2 ( r 23 + r 34 e 2 j β 3 L 3 ) ] ,

Metrics