Abstract

We demonstrate continuous-wave cascaded optical parametric oscillation in which the signal field of the primary parametric oscillator internally pumps the secondary parametric oscillator. Wavelength tuning is achieved with temperature tuning and a fan-out grating structure of a dual-grating periodically poled lithium niobate crystal. Above the secondary threshold the primary signal power is clamped, and all the other output powers increase linearly with the input pump power, in accordance with theory. Cascaded parametric oscillation offers a convenient and efficient way to generate multiple tunable outputs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schneider and S. Schiller, Opt. Lett. 22, 363 (1997).
    [CrossRef] [PubMed]
  2. P. T. Nee and N. C. Wong, Opt. Lett. 23, 46 (1998).
    [CrossRef]
  3. J.-J. Zondy, D. Kolker, and F. N. C. Wong, Phys. Rev. Lett. 93, 043902 (2004).
    [CrossRef] [PubMed]
  4. P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).
    [CrossRef]
  5. A. E. Siegman, Appl. Opt. 1, 739 (1962).
    [CrossRef]
  6. J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
    [CrossRef]

2004

J.-J. Zondy, D. Kolker, and F. N. C. Wong, Phys. Rev. Lett. 93, 043902 (2004).
[CrossRef] [PubMed]

2001

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

1998

1997

1962

Bisson, S. E.

Douillet, A.

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

Kolker, D.

J.-J. Zondy, D. Kolker, and F. N. C. Wong, Phys. Rev. Lett. 93, 043902 (2004).
[CrossRef] [PubMed]

Kulp, T. J.

Le Berre, M.

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

Nee, P. T.

Powers, P. E.

Ressayre, E.

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

Schiller, S.

Schneider, K.

Siegman, A. E.

Tallet, A.

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

Wong, F. N. C.

J.-J. Zondy, D. Kolker, and F. N. C. Wong, Phys. Rev. Lett. 93, 043902 (2004).
[CrossRef] [PubMed]

Wong, N. C.

Zondy, J.-J.

J.-J. Zondy, D. Kolker, and F. N. C. Wong, Phys. Rev. Lett. 93, 043902 (2004).
[CrossRef] [PubMed]

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

Appl. Opt.

Opt. Lett.

Phys. Rev. A

J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, Phys. Rev. A 63, 023814 (2001).
[CrossRef]

Phys. Rev. Lett.

J.-J. Zondy, D. Kolker, and F. N. C. Wong, Phys. Rev. Lett. 93, 043902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of experimental setup. Cascaded OPO output powers are monitored and output wavelengths are measured. LP1, 1 μ m long-pass filter; LP2, 0.7 μ m long-pass filter; BP, 532 nm bandpass filter.

Fig. 2
Fig. 2

Typical traces for pump, signal, and 1.6 μ m outputs versus cavity PZT scan for input pump power of (a) 107 mW and (b) 321 mW . Dashed line in (a) indicates clamping level of primary signal under S-OPO operation.

Fig. 3
Fig. 3

Plot of (a) pump (filled circles), (b) signal (filled squares), and (c) 1.6 μ m output (filled triangles) powers versus input pump power. The S-OPO was above threshold except for data taken at 64 mW which are excluded for the linear fits (solid lines), showing clamping of the primary signal, and linear output powers for the pump, primary idler, and S-OPO outputs.

Fig. 4
Fig. 4

Plot of P-OPO idler (filled squares), S-OPO signal (filled triangles), and idler (filled circles) wavelengths at different locations along the fan-out grating section.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A ̇ p = κ p A p χ 1 A s A i + 2 κ p e p ,
A ̇ s = κ s A s + χ 1 A p A i * χ 2 A + A ,
A ̇ i = κ i A i + χ 1 A p A s * ,
A ̇ + = κ + A + + χ 2 A s A * ,
A ̇ = κ A + χ 2 A s A + * .
ϕ p = ϕ s + ϕ i , r p 2 = κ s κ i χ 1 2 ,
2 κ s r s 2 = 2 κ i r i 2 = 4 e p 1 2 ( e p e p 1 1 ) ,
e p 1 2 = κ p κ s κ i 2 χ 1 2 ,
ϕ p = ϕ s + ϕ i , ϕ s = ϕ + + ϕ ,
2 κ s r s 2 = 2 κ s κ + κ χ 2 2 4 e p 2 2 ,
2 κ + r + 2 = 2 κ r 2 = 4 e p 2 2 ( e p 2 e ̃ p 2 1 ) ,
2 κ p r p 2 = 4 e p 1 2 e p 2 e ̃ p 2 , 2 κ i r i 2 = 4 e p 2 2 e p 2 e ̃ p 2 ,
e ̃ p 2 = e p 1 2 ( 1 + e p 2 2 e p 1 2 ) 2 .

Metrics