Abstract

A femtosecond optical parametric oscillator is demonstrated that can operate in a regime where two signal pulses with well-separated center wavelengths are simultaneously resonant. Measurements show that the oscillator output contains a stable modulation at a frequency corresponding to the difference in the carrier-envelope phase-slip frequencies of the co-resonant pulses. The physical origin of this internal beat signal is attributed to second-order mixing effects, and its frequency is shown to be consistent with theory.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Betz, F. Sotier, F. Tauser, S. Trumm, A. Laubereau, and A. Leitenstorfer, Opt. Lett. 29, 629 (2004).
    [CrossRef] [PubMed]
  2. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
    [CrossRef] [PubMed]
  3. A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, Opt. Lett. 29, 1081 (2004).
    [CrossRef] [PubMed]
  4. Y. Kobayashi, D. Yoshitomi, M. Kakehata, H. Takada, and K. Torizuka, Opt. Lett. 30, 2496 (2005).
    [CrossRef] [PubMed]
  5. D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 30, 1408 (2005).
    [CrossRef] [PubMed]
  6. A. Bartels, N. R. Newbury, I. Thomann, L. Hollberg, and S. A. Diddams, Opt. Lett. 29, 403 (2004).
    [CrossRef] [PubMed]
  7. Y. Kobayashi and K. Torizuka, Opt. Lett. 25, 856 (2000).
    [CrossRef]
  8. Y. Kobayashi and K. Torizuka, Opt. Lett. 26, 1295 (2001).
    [CrossRef]
  9. Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 28, 1377 (2003).
    [CrossRef] [PubMed]
  10. Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Appl. Phys. Lett. 83, 839 (2003).
    [CrossRef]
  11. D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
    [CrossRef]
  12. J. E. Bjorkholm, IEEE J. Quantum Electron. 5, 293 (1969).
    [CrossRef]
  13. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, Opt. Lett. 20, 55 (1995).
    [CrossRef] [PubMed]

2005 (2)

2004 (3)

2003 (2)

Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 28, 1377 (2003).
[CrossRef] [PubMed]

Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Appl. Phys. Lett. 83, 839 (2003).
[CrossRef]

2001 (2)

Y. Kobayashi and K. Torizuka, Opt. Lett. 26, 1295 (2001).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

2000 (1)

1995 (1)

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

1969 (1)

J. E. Bjorkholm, IEEE J. Quantum Electron. 5, 293 (1969).
[CrossRef]

Bartels, A.

Betz, M.

Bjorkholm, J. E.

J. E. Bjorkholm, IEEE J. Quantum Electron. 5, 293 (1969).
[CrossRef]

Diddams, S. A.

Ebrahimzadeh, M.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Hall, J. L.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Hollberg, L.

Kakehata, M.

Kapteyn, H. C.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Kobayashi, Y.

Laubereau, A.

Leitenstorfer, A.

Ma, L.-S.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Newbury, N. R.

Oates, C. W.

Reid, D. T.

Shelton, R. K.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Sibbett, W.

Sotier, F.

Takada, H.

Tang, C. L.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Tauser, F.

Thomann, I.

Torizuka, K.

Trumm, S.

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Ye, J.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Yoshitomi, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic showing the configurations for obtaining the pump, signal, and idler CEPS frequencies. IF, 10 nm bandwidth interference filters; APD, avalanche photodiode; CM, cold mirror; KTP , potassium titanyl phosphate crystal; FM, flipper mirror; OSA, optical spectrum analyzer; P, BK7 prisms; PBS, polarizing beam splitter. Other abbreviations defined in text. (b) Spectra of co-resonant signal pulses recorded as the OPO was cavity-length tuned. The labels show the measured internal beat frequency and the change in the intracavity group delay of the pulses caused by tuning their wavelengths.

Fig. 2
Fig. 2

(a) Beat signal between the two pump–idler SFM pulses corresponding to the co-resonant signal pulses ( 14 MHz ) and independent beat frequencies observed between each SFM pulse and the pump supercontinuum (62 and 76 MHz ). (b) CEPS frequencies of the two idler pulses corresponding to the two co-resonant signal pulses (open symbols) and the calculated difference in their CEPS frequencies (filled symbols) shown as a function of the SFM internal beat frequency. The solid line intercepts the origin and has a gradient of 1.

Fig. 3
Fig. 3

(a) Wavelength dependence of the group-delay of the co-resonant signal pulses, inferred from cavity-length tuning measurements. A cubic fit (line) to the experimental data (symbols) is shown. (b) Roundtrip intracavity phase calculated by integrating the fitted group-delay profile in (a). (c) CEPS per roundtrip, calculated from the profiles in (a) and (b). (d) Comparison of the measured difference in the signal CEPS frequencies (crosses) and the calculated values (circles).

Metrics