Abstract

300W continuous-wave operation of a diode edge-pumped, hybrid (single-crystal/ceramic) composite, Yb3+:YAG microchip laser with a 5mm diameter and 300μm thickness single-crystal core uniformly bonded to a water-cooled heat sink by a new Au–Sn soldering system has been demonstrated. The beam quality factor M2 follows the mode mismatch between the core and the fundamental mode and was improved to 17 with a maximum output power of 230W. A thermally induced convex mirror with a spherical radius of curvature ranging from 2.5 to 1.5m was observed; the radius of curvature decreases through thermal deformation of the microchip as the pump power increases.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, Opt. Lett. 14, 1089 (1991).
  2. T. Taira, W. M. Tulloch, and R. L. Byer, Jpn. J. Appl. Phys., Part 1 36, 1867 (1997).
  3. T. Y. Fan, IEEE J. Quantum Electron. 28, 2692 (1992).
    [CrossRef]
  4. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett. 16, 1955 (1991).
    [CrossRef] [PubMed]
  5. T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
    [CrossRef]
  6. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).
  7. J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.
  8. N. Pavel, J. Saikawa, and T. Taira, Jpn. J. Appl. Phys., Part 1 40, 146 (2001).
    [CrossRef]
  9. T. Dascalu, N. Pavel, and T. Taira, Appl. Phys. Lett. 83, 4086 (2003).
    [CrossRef]
  10. M. Tsunekane and T. Taira, Jpn. J. Appl. Phys., Part 1 44, L1164 (2005).
    [CrossRef]
  11. M. Tsunekane and T. Taira, Rev. Laser Eng. 34, 181 (2006) (in Japanese).
  12. A. J. Kemp, G. J. Valentine, and D. Burns, Prog. Quantum Electron. 28, 305 (2005).
    [CrossRef]

2006 (1)

M. Tsunekane and T. Taira, Rev. Laser Eng. 34, 181 (2006) (in Japanese).

2005 (2)

A. J. Kemp, G. J. Valentine, and D. Burns, Prog. Quantum Electron. 28, 305 (2005).
[CrossRef]

M. Tsunekane and T. Taira, Jpn. J. Appl. Phys., Part 1 44, L1164 (2005).
[CrossRef]

2003 (1)

T. Dascalu, N. Pavel, and T. Taira, Appl. Phys. Lett. 83, 4086 (2003).
[CrossRef]

2001 (1)

N. Pavel, J. Saikawa, and T. Taira, Jpn. J. Appl. Phys., Part 1 40, 146 (2001).
[CrossRef]

1997 (2)

T. Taira, W. M. Tulloch, and R. L. Byer, Jpn. J. Appl. Phys., Part 1 36, 1867 (1997).

T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
[CrossRef]

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

1992 (1)

T. Y. Fan, IEEE J. Quantum Electron. 28, 2692 (1992).
[CrossRef]

1991 (2)

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Burns, D.

A. J. Kemp, G. J. Valentine, and D. Burns, Prog. Quantum Electron. 28, 305 (2005).
[CrossRef]

Byer, R. L.

T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, Jpn. J. Appl. Phys., Part 1 36, 1867 (1997).

Dascalu, T.

T. Dascalu, N. Pavel, and T. Taira, Appl. Phys. Lett. 83, 4086 (2003).
[CrossRef]

Fan, T. Y.

T. Y. Fan, IEEE J. Quantum Electron. 28, 2692 (1992).
[CrossRef]

T. Y. Fan, Opt. Lett. 14, 1089 (1991).

Giesen, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Kemp, A. J.

A. J. Kemp, G. J. Valentine, and D. Burns, Prog. Quantum Electron. 28, 305 (2005).
[CrossRef]

Kobayashi, T.

Kobayshi, T.

T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
[CrossRef]

Kurimura, S.

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.

Mukai, A.

Nozawa, Y.

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Pavel, N.

T. Dascalu, N. Pavel, and T. Taira, Appl. Phys. Lett. 83, 4086 (2003).
[CrossRef]

N. Pavel, J. Saikawa, and T. Taira, Jpn. J. Appl. Phys., Part 1 40, 146 (2001).
[CrossRef]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.

Saikawa, J.

N. Pavel, J. Saikawa, and T. Taira, Jpn. J. Appl. Phys., Part 1 40, 146 (2001).
[CrossRef]

T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
[CrossRef]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.

Shoji, I.

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.

Taira, T.

M. Tsunekane and T. Taira, Rev. Laser Eng. 34, 181 (2006) (in Japanese).

M. Tsunekane and T. Taira, Jpn. J. Appl. Phys., Part 1 44, L1164 (2005).
[CrossRef]

T. Dascalu, N. Pavel, and T. Taira, Appl. Phys. Lett. 83, 4086 (2003).
[CrossRef]

N. Pavel, J. Saikawa, and T. Taira, Jpn. J. Appl. Phys., Part 1 40, 146 (2001).
[CrossRef]

T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, Jpn. J. Appl. Phys., Part 1 36, 1867 (1997).

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett. 16, 1955 (1991).
[CrossRef] [PubMed]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.

Tsunekane, M.

M. Tsunekane and T. Taira, Rev. Laser Eng. 34, 181 (2006) (in Japanese).

M. Tsunekane and T. Taira, Jpn. J. Appl. Phys., Part 1 44, L1164 (2005).
[CrossRef]

Tulloch, W. M.

T. Taira, W. M. Tulloch, and R. L. Byer, Jpn. J. Appl. Phys., Part 1 36, 1867 (1997).

Valentine, G. J.

A. J. Kemp, G. J. Valentine, and D. Burns, Prog. Quantum Electron. 28, 305 (2005).
[CrossRef]

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 363 (1994).

Appl. Phys. Lett. (1)

T. Dascalu, N. Pavel, and T. Taira, Appl. Phys. Lett. 83, 4086 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan, IEEE J. Quantum Electron. 28, 2692 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, J. Saikawa, T. Kobayshi, and R. L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (3)

N. Pavel, J. Saikawa, and T. Taira, Jpn. J. Appl. Phys., Part 1 40, 146 (2001).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, Jpn. J. Appl. Phys., Part 1 36, 1867 (1997).

M. Tsunekane and T. Taira, Jpn. J. Appl. Phys., Part 1 44, L1164 (2005).
[CrossRef]

Opt. Lett. (2)

Prog. Quantum Electron. (1)

A. J. Kemp, G. J. Valentine, and D. Burns, Prog. Quantum Electron. 28, 305 (2005).
[CrossRef]

Rev. Laser Eng. (1)

M. Tsunekane and T. Taira, Rev. Laser Eng. 34, 181 (2006) (in Japanese).

Other (1)

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), p. 106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Hybrid composite microchip (single-crystal Yb:YAG core with ceramic YAG pump-light guide) bonded to a heat sink by a Au–Sn solder.

Fig. 2
Fig. 2

2D cross-sectional images of the bond layers of (a) glue and (b) Au-Sn measured by scanning acoustic tomography.

Fig. 3
Fig. 3

Averaged temperatures of the AR-coated surfaces of the diode edge-pumped microchip cores bonded by glue and by Au–Sn as a function of input pump power.

Fig. 4
Fig. 4

Cw output power and beam quality characteristics ( M 2 factor) with four different cavity configurations as a function of input pump power.

Fig. 5
Fig. 5

(a) Spherical radius of curvature of the thermally induced convex mirror as a function of input pump power. (b) Surface topology of the bonded core. (c) Illustration of the thermal deformation of the microchip.

Metrics