Abstract

Optical frequency combs generated by femtosecond fiber lasers typically exhibit significant frequency noise that causes broad optical linewidths, particularly in the comb wings and in the carrier-envelope offset frequency (fceo) signal. We show these broad linewidths are mainly a result of white amplitude noise on the pump diode laser that leads to a breathing-like motion of the comb about a central fixed frequency. By a combination of passive noise reduction and active feedback using phase-lead compensation, this noise source is eliminated, thereby reducing the fceo linewidth from 250kHz to <1Hz. The in-loop carrier-envelope offset phase jitter, integrated to 100kHz, is 1.3rad.

© 2006 U.S. Government

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  2. J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation And Application (Springer, 2005).
    [CrossRef]
  3. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, Opt. Lett. 29, 250 (2004).
    [CrossRef] [PubMed]
  4. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. N. Fermann, Opt. Lett. 29, 2467 (2004).
    [CrossRef] [PubMed]
  5. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, Opt. Express 13, 904 (2005).
    [CrossRef] [PubMed]
  6. I. Hartl, G. Imshev, M. E. Fermann, C. Langrock, and M. M. Fejer, Opt. Express 13, 6490 (2005).
    [CrossRef] [PubMed]
  7. E. Benkler, H. R. Telle, A. Zach, and F. Tauser, Opt. Express 13, 5662 (2005).
    [CrossRef] [PubMed]
  8. F. Tauser, A. Leitenstorfer, and W. Zinth, Opt. Express 11, 594 (2003).
    [CrossRef] [PubMed]
  9. F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, Opt. Lett. 28, 1516 (2003).
    [CrossRef] [PubMed]
  10. R. Paschotta, Appl. Phys. B 79, 163 (2004).
  11. N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
    [CrossRef]
  12. B. R. Washburn, W. C. Swann, and N. R. Newbury, Opt. Express 13, 10622 (2005).
    [CrossRef] [PubMed]
  13. H. R. Telle, B. Lipphardt, and J. Stenger, Appl. Phys. B 74, 1 (2002).
    [CrossRef]
  14. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, Opt. Lett. 19, 46 (1994).
    [CrossRef] [PubMed]
  15. Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

2005

2004

2003

2002

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

H. R. Telle, B. Lipphardt, and J. Stenger, Appl. Phys. B 74, 1 (2002).
[CrossRef]

1994

Adel, P.

Adler, F.

Benkler, E.

Cundiff, S.

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation And Application (Springer, 2005).
[CrossRef]

Diddams, S. A.

Doerr, C. R.

Fejer, M. M.

Fermann, M. E.

Fermann, M. N.

Grosche, G.

Hänsch, T. W.

Hartl, I.

Haus, H. A.

Hayamizu, N.

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

Hirai, A.

Holzwarth, R.

Hong, F.-L.

Imshev, G.

Inaba, H.

Ippen, E. P.

Irino, S.

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

Jørgensen, C. G.

Kubina, P.

Langrock, C.

Leitenstorfer, A.

Lipphardt, B.

Matsumoto, H.

Minoshima, K.

Nelson, L. E.

Newbury, N. R.

Nicholson, J. W.

Ohki, Y.

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

Onae, A.

Paschotta, R.

R. Paschotta, Appl. Phys. B 79, 163 (2004).

Schibli, T. R.

Schnatz, H.

Shimizu, H.

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

Stenger, J.

H. R. Telle, B. Lipphardt, and J. Stenger, Appl. Phys. B 74, 1 (2002).
[CrossRef]

Sugiura, T.

Swann, W. C.

Takada, H.

Tamura, K.

Tauser, F.

Telle, H. R.

Tsukiji, N.

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Washburn, B. R.

Yan, M. F.

Ye, J.

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation And Application (Springer, 2005).
[CrossRef]

Yoshida, J.

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

Yoshida, M.

Zach, A.

Zinth, W.

Appl. Phys. B

R. Paschotta, Appl. Phys. B 79, 163 (2004).

H. R. Telle, B. Lipphardt, and J. Stenger, Appl. Phys. B 74, 1 (2002).
[CrossRef]

Furukawa Review

Y. Ohki, N. Hayamizu, S. Irino, H. Shimizu, J. Yoshida, and N. Tsukiji, Furukawa Review 24, 6 (2003), www.furukawa.co.jp/review/

IEEE J. Quantum Electron.

N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
[CrossRef]

Nature

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation And Application (Springer, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Breathing mode of the comb about the fixed point induced by pump-power fluctuations; the length of the double arrow indicates the magnitude of the jitter. (b) Frequency noise level, S n ( 0 ) (solid line, left axis) and the linewidth, Δ f n (dashed line, right axis), versus f n , assum - ing f fix = c 1460 nm , ν 3 dB = 6 kHz , S ceo ( 0 ) = 60 dB Hz 2 Hz ( = 1 kHz 2 Hz ) , corresponding to 400 mA pump current. The black triangles are actual measured values of S n ( 0 ) for f ceo , f n ̱ 1064 , f n ̱ 1536 , and f n ̱ 1550 .

Fig. 2
Fig. 2

Experimental setup for measurements for f r , f ceo , f n ̱ 1064 , f n ̱ 1550 , and f n ̱ 1536 versus pump RIN. HNLF, highly nonlinear fiber; EDFA, erbium-doped fiber amplifier; SHG, second-harmonic generation. Inset, measured pump RIN versus current.

Fig. 3
Fig. 3

Measured S ceo (solid line) and expected S ceo (dashed gray line) calculated from scaling the measured laser RIN by n fix 2 ( P d f r d P ) 2 = ( P d f ceo d P ) 2 . (The floor results from the RIN measurement limit.) Inset, measured f ceo line shape (solid line) and the calculated line shape (dashed gray line) obtained from only the pump-induced frequency noise.

Fig. 4
Fig. 4

Measured frequency noise on (a) the ceo frequency, S ceo and (b) the 1 μ m comb line, S n ̱ 1064 at I P = 400 mA , 550 mA , 850 mA , and 1 A .

Fig. 5
Fig. 5

Phase-locked f ceo beat signal at 1 kHz resolution bandwidth (rbw) and I P = 1000 mA . The coherent peak remains below at a 0.3 Hz rbw (compare with Fig. 3, inset). Inset, corresponding frequency noise with servo bumps at 80 kHz [compare with Fig. 4a].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S n ( ν ) = ( n n fix ) 2 ( P d f r d P ) 2 [ RIN P 1 + ( ν ν 3 dB ) 2 ] [ Hz 2 Hz ] ,

Metrics