Abstract

A novel interferometry technique using a frequency-comb light source is proposed for surface profilometry and tomography of discontinuous objects. Surface profile measurement is performed by sweeping the comb interval frequency without mechanical scanning. Step heights of 0.5 and 1.0mm are successfully measured by use of the scheme with 9μm accuracy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee and T. Strand, Appl. Opt. 29, 3784 (1990).
    [CrossRef] [PubMed]
  2. T. Dresel, G. Hausler, and H. Venzke, Appl. Opt. 31, 919 (1992).
    [CrossRef] [PubMed]
  3. L. Deck and P. de Groot, Appl. Opt. 33, 7334 (1994).
    [CrossRef] [PubMed]
  4. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, and T. Kurokawa, Appl. Opt. 38, 7063 (1999).
    [CrossRef]
  5. Z. He and K. Hotate, Opt. Lett. 24, 1502 (1999).
    [CrossRef]
  6. M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.
  7. M. Martinelli, Opt. Commun. 72, 341 (1989).
    [CrossRef]
  8. D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).
  9. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
    [CrossRef]

2001 (1)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
[CrossRef]

1999 (2)

1994 (1)

1992 (1)

1990 (1)

1989 (1)

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Choi, S.

D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).

de Groot, P.

Deck, L.

Dresel, T.

Hausler, G.

He, Z.

Higuma, K.

M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.

Hotate, K.

Kinoshita, M.

Kourogi, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
[CrossRef]

Kurokawa, T.

M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, and T. Kurokawa, Appl. Opt. 38, 7063 (1999).
[CrossRef]

M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.

D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).

Lee, B.

Lee, S. J.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
[CrossRef]

Martinelli, M.

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Moteki, D.

D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).

Ohtsu, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
[CrossRef]

Shioda, T.

D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).

M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.

Strand, T.

Takeda, M.

Tanaka, Y.

M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.

D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).

Venzke, H.

Watanabe, Y.

Widiyatmoko, B.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
[CrossRef]

Yago, H.

Yamamoto, M.

M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.

Appl. Opt. (4)

Jpn. J. Appl. Phys., Part 2 (1)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys., Part 2 40, L878 (2001).
[CrossRef]

Opt. Commun. (1)

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Opt. Lett. (1)

Other (2)

M. Yamamoto, Y. Tanaka, T. Shioda, T. Kurokawa, and K. Higuma, in Proceedings of Integrated Photonics Research and Applications (Optical Society of America, 2005), paper ITuF5.

D. Moteki, S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of Micro Optics Conference (Japan Society of Applied Physics, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Relationship between the optical power spectrum and interferometric output signal. (a) Optical power spectrum of frequency comb light source. (b) Interferometric output signal. ν, optical frequency; ν 0 , center frequency; ν i , interval frequency; Δ ν B , bandwidth of the comb spectrum; F ( ν ) , envelope profile; G ( ν ) , longitudinal mode shape of the comb spectrum; f ( τ ) , Fourier transform of F ( ν ) ; g ( τ ) , Fourier transform of G ( ν ) ; τ, relative time delay; τ 0 , 1 ν i ; n L , optical path difference between the sample and the reference line.

Fig. 2
Fig. 2

Experimental setup for step-height measurement. LD, laser diode; PM, LiNbO 3 phase modulator; FRT, Faraday rotator transmitter; FRR, Faraday rotator reflector.

Fig. 3
Fig. 3

Optical spectrum of frequency comb light source (FWHM, 2 nm ; interval frequency, 12 GHz ).

Fig. 4
Fig. 4

Experimental results: (a) interferometric signal for each position, (b) surface profile of sample.

Fig. 5
Fig. 5

Interferometric signal for a transparent glass plate.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( ν ) 2 F ( ν ν 0 ) [ G ( ν ) * p = δ ( ν p ν i ) ] ,
Γ ( τ ) F 1 [ F ( ν ν 0 ) { G ( ν ) * p = δ ( ν p ν i ) } ] g ( τ ) exp [ j 2 π ν 0 τ ] [ f ( τ ) * p = δ ( τ p τ 0 ) ] ,
n L = N c 2 ν i ( N : integer ) .
Δ L = α c 2 n Δ ν B ,
δ ( n L ) N c δ ν 2 ν i 2 ,

Metrics