Abstract

We study the purity of correlated photon pairs generated in a dispersion-shifted fiber at various temperatures. The ratio of coincidence to accidental-coincidence counts greater than 100 can be obtained as the fiber is cooled to liquid-nitrogen temperature (77K). We then generate polarization-entangled photon pairs by using a compact counterpropagating scheme. Two-photon interference with visibility >98% and Bell’s inequality violation by >8 standard deviations of measurement uncertainty are observed at 77K, without subtracting the accidental-coincidence counts due to background Raman photons.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367 (2001).
    [CrossRef]
  2. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
    [CrossRef]
  3. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  4. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Opt. Lett. 30, 1201 (2005).
    [CrossRef] [PubMed]
  5. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.
  6. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, Opt. Express 12, 3737 (2004).
    [CrossRef] [PubMed]
  7. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, Opt. Express 13, 2236 (2005).
    [CrossRef] [PubMed]
  8. P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, ''All-fiber photon-pair source for quantum communications,'' U.S. patent 6,897,434 (May 24, 2005).
  9. H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  10. R. H. Stolen and M. A. Bosch, Phys. Rev. Lett. 48, 805 (1982).
    [CrossRef]
  11. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Lett. 24, 1823 (1999).
    [CrossRef]
  12. H. Takesue and K. Inoue, Opt. Express 13, 7832 (2005).
    [CrossRef] [PubMed]
  13. J. Fan, A. Dogariu, and L. J. Wang, Opt. Lett. 30, 1530 (2005).
    [CrossRef] [PubMed]
  14. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
    [CrossRef]

2005 (5)

2004 (2)

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

2001 (1)

1999 (1)

1982 (1)

R. H. Stolen and M. A. Bosch, Phys. Rev. Lett. 48, 805 (1982).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Bosch, M. A.

R. H. Stolen and M. A. Bosch, Phys. Rev. Lett. 48, 805 (1982).
[CrossRef]

Chen, J.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, Opt. Express 13, 2236 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Opt. Lett. 30, 1201 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, Opt. Express 12, 3737 (2004).
[CrossRef] [PubMed]

Chernikov, S. V.

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Dogariu, A.

Fan, J.

Fiorentino, M.

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, ''All-fiber photon-pair source for quantum communications,'' U.S. patent 6,897,434 (May 24, 2005).

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367 (2001).
[CrossRef]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Inoue, K.

H. Takesue and K. Inoue, Opt. Express 13, 7832 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Kumar, P.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, ''All-fiber photon-pair source for quantum communications,'' U.S. patent 6,897,434 (May 24, 2005).

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, Opt. Express 13, 2236 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Opt. Lett. 30, 1201 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, Opt. Express 12, 3737 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367 (2001).
[CrossRef]

Lee, K. F.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, Opt. Express 13, 2236 (2005).
[CrossRef] [PubMed]

Lewis, S. A. E.

Li, X.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Opt. Lett. 30, 1201 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, Opt. Express 13, 2236 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, Opt. Express 12, 3737 (2004).
[CrossRef] [PubMed]

Liang, C.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

Sharping, J.

Sharping, J. E.

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, ''All-fiber photon-pair source for quantum communications,'' U.S. patent 6,897,434 (May 24, 2005).

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Opt. Lett. 30, 1201 (2005).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367 (2001).
[CrossRef]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Stolen, R. H.

R. H. Stolen and M. A. Bosch, Phys. Rev. Lett. 48, 805 (1982).
[CrossRef]

Takesue, H.

H. Takesue and K. Inoue, Opt. Express 13, 7832 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Taylor, J. R.

Voss, P. L.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, ''All-fiber photon-pair source for quantum communications,'' U.S. patent 6,897,434 (May 24, 2005).

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, Opt. Express 13, 2236 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Opt. Lett. 30, 1201 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, Opt. Express 12, 3737 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Wang, L. J.

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (1)

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

R. H. Stolen and M. A. Bosch, Phys. Rev. Lett. 48, 805 (1982).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Other (2)

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, ''An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band,'' Phys. Rev. A (to be published), see arXiv: quant-ph/0601087.

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, ''All-fiber photon-pair source for quantum communications,'' U.S. patent 6,897,434 (May 24, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. FP, fiber port; LP, linear polarizer; L2–L5, fiber-to-free space collimators; PBS, polarization beam splitter; HWP, QWP, half- and quarter-wave plates; FPC, fiber polarization controller.

Fig. 2
Fig. 2

Ratio between the coincidence and the accidental-coincidence counts versus single counts per pulse with the fiber at 300 K (solid circles), 195 K (solid diamonds), and 77 K (solid squares). The inset shows the measured two-photon interference with 91% visibility for the fiber at 300 K .

Fig. 3
Fig. 3

Two-photon interference with the fiber at (a) 195 K , (b) 77 K . The observed visibility is about 95% and 98.3%, respectively. Note that increased coincidences in (b) are possibly due to better phase matching owing to the shift of the zero-dispersion wavelength with temperature.

Tables (1)

Tables Icon

Table 1 Violation of Bell’s Inequality for the State H i V s V i H s a

Metrics