Abstract

Ultra-high-Q optical microcavities (Q>107) provide one method for distinguishing chemically similar species. Resonators immersed in H2O have lower quality factors than those immersed in D2O due to the difference in optical absorption. This difference can be used to create a D2O detector. This effect is most noticeable at 1300nm, where the Q(H2O) is 106 and the Q(D2O) is 107. By monitoring Q, concentrations of 0.0001% [1 part in 106 per volume] of D2O in H2O have been detected. This sensitivity represents an order of magnitude improvement over previous techniques. Reversible detection was also demonstrated by cyclic introduction and flushing of D2O.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hibino and H. Iwahara, J. Electrochem. Soc. 141, L125 (1994).
    [CrossRef]
  2. D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
    [CrossRef] [PubMed]
  3. J. Annyas, D. Bicanic, and F. Schouten, Appl. Spectrosc. 53, 339 (1999).
    [CrossRef]
  4. S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
    [CrossRef]
  5. R. W. Boyd and J. E. Heebner, Appl. Opt. 40, 5742 (2001).
    [CrossRef]
  6. G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
    [CrossRef] [PubMed]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  8. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
    [CrossRef]
  9. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]

2005

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

2003

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2001

1999

J. Annyas, D. Bicanic, and F. Schouten, Appl. Spectrosc. 53, 339 (1999).
[CrossRef]

D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
[CrossRef] [PubMed]

1994

T. Hibino and H. Iwahara, J. Electrochem. Soc. 141, L125 (1994).
[CrossRef]

1973

Annyas, J.

Armani, A. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Bicanic, D.

Blair, S.

Boyd, R. W.

Chen, Y.

Hale, G. M.

Heebner, J. E.

Hibino, T.

T. Hibino and H. Iwahara, J. Electrochem. Soc. 141, L125 (1994).
[CrossRef]

Iwahara, H.

T. Hibino and H. Iwahara, J. Electrochem. Soc. 141, L125 (1994).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Lacey, M. E.

D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
[CrossRef] [PubMed]

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Olson, D. L.

D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
[CrossRef] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Querry, M. R.

Schouten, F.

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Sweedler, J. V.

D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Webb, A. G.

D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
[CrossRef] [PubMed]

Anal. Chem.

D. L. Olson, M. E. Lacey, A. G. Webb, and J. V. Sweedler, Anal. Chem. 71, 3070 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Appl. Spectrosc.

J. Electrochem. Soc.

T. Hibino and H. Iwahara, J. Electrochem. Soc. 141, L125 (1994).
[CrossRef]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fabrication outline consisting of (a) patterning the silica into an array of circular oxide pads, (b) etching the silicon wafer substrate with XeF 2 to form the microdisk, and (c) reflowing the silica disk with a CO 2 laser to form the toroidal resonator. (d) Using tapered optical fiber waveguides, the 1300 nm tunable laser is coupled into and out of the toroid.

Fig. 2
Fig. 2

The microtoroid resonator is initially immersed in a solution of 100% D 2 O . The D 2 O concentration of solution is diluted with H 2 O in increments of 10%, until the toroid is immersed in 100% H 2 O . This process of controllably changing D 2 O and H 2 O is repeated five times. Q is systematically degraded (red circles) and recovered (green triangles) as the D 2 O and H 2 O are exchanged repeatedly.

Fig. 3
Fig. 3

Starting with 100% H 2 O , the concentration of D 2 O was gradually increased by using low-concentration solutions ranging from 1 × 10 9 % to 0.01 % . A large change in the quality factor could be detected at 0.001 % ( 10 ppmv ) . An additional change in Q could be detected at 0.0001 % ( 1 ppmv ) .

Tables (1)

Tables Icon

Table 1 Experimental and Theoretical Values of Q for High- and Low-Concentration Detection a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( × 10 6 )
1 × 10 3
1 × 10 4
1 × 10 - 5
1 × 10 - 6
1 × 10 - 7
1 × 10 - 8
1 × 10 - 9

Metrics