Abstract

We present a soliton effect pulse compression technique that uses self-defocusing cascaded-quadratic nonlinearities, with no fundamental limit to its scalability to high pulse energies and the capability of generating few-cycle pulses with only a frequency-doubling crystal. The conditions for which group-velocity mismatch causes an acceptable perturbation to soliton compression are analyzed and underlie optimization of the compressor. Calculations predict compression to near-single-cycle durations, with compression ratios as high as 100. Initial experiments closely agree with calculations, demonstrating compression to durations under three optical cycles (12fs) and generation of 600nm bandwidths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
    [CrossRef]
  2. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
    [CrossRef]
  3. X. Liu, L. Qian, and F. Wise, Opt. Lett. 24, 1777 (1999).
    [CrossRef]
  4. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 19, 2505 (2002).
    [CrossRef]
  5. See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
    [PubMed]
  6. F. O. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, J. Opt. Soc. Am. B 21, 376 (2004).
    [CrossRef]
  7. J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
    [CrossRef]
  8. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  9. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  10. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

2004

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

F. O. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, J. Opt. Soc. Am. B 21, 376 (2004).
[CrossRef]

2002

1999

1997

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

1990

See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[PubMed]

1986

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

J. P. Gordon, Opt. Lett. 11, 662 (1986).
[CrossRef] [PubMed]

1983

Ashihara, S.

Bakker, H. J.

See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[PubMed]

Beckwitt, K.

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Chen, Y.-F.

Cheng, Z.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Couairon, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

DeSilvestri, S.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Dianov, E. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Gordon, J. P.

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Ilday, F. O.

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Krausz, F.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Kuipers, L.

See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[PubMed]

Kuroda, K.

Lagendijk, A.

See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[PubMed]

Lenzner, M.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Lim, H.

Liu, X.

Mollenauer, L. F.

Mysyrowicz, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Nikonova, Z. S.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Nishina, J.

Nisoli, M.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Planken, P. C. M.

See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[PubMed]

Prokhorov, A. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Qian, L.

Sartania, S.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Serkin, V. N.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Shimura, T.

Spielmann, Ch.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Stagira, S.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Stolen, R. H.

Svelto, O.

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

Tomlinson, W. J.

Torner, L.

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

Torres, J. P.

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

Wise, F.

Wise, F. W.

Appl. Phys. B

M. Nisoli, S. Stagira, S. DeSilvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, Appl. Phys. B 65, 189 (1997).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Quantum Electron.

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

Phys. Rev. A

See, for example, H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[PubMed]

Sov. Tech. Phys. Lett.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top: numerical calculations of soliton compression of 200 fs Gaussian pulses in cubic ( χ ( 3 ) ) and quadratic ( χ ( 2 ) ) media, illustrating the Raman-like GVM-induced distortions in the quadratic case at large N. The y-axis indicates peak power of the compressed pulse relative to that of the input. Bottom: (i) the temporal profile at optimum N for the quadratic case and (ii) typical features of the temporal profile beyond optimum N, such as a large asymmetric pedestal, reduced peak power, and soliton splitting.

Fig. 2
Fig. 2

Example of simulated compression in BBO. A 500 fs Gaussian pulse at 1.064 μ m is compressed to 6.7 fs at Z = 6.25 cm . Δ k = 16 π mm and initial intensity is 100 GW cm 2 .

Fig. 3
Fig. 3

Numerically calculated spectral and temporal profiles of compressed 100 fs pulses in BBO: (a) Δ k = 20 π mm , I = 100 GW cm 2 ; (b) Δ k = 15 π mm , I = 100 GW cm 2 ; (c) Δ k = 6 π mm , I = 30 GW cm 2 . (c) corresponds to our experimental conditions and results (see Fig. 4). (a) and (b) illustrate the trend with higher intensity and larger Δ k , when higher pulse energy is available.

Fig. 4
Fig. 4

(a) Simulated spectra, (b) temporal profiles, and (inset) autocorrelation, showing compression of a 100 fs pulse at 1250 nm to 6 fs , with Δ k = 6.0 π mm , I = 30 GW cm 2 , and 24 mm of propagation in BBO. Experimental results (c) and (d) show compression of a 110 fs pulse at 1260 nm to a 12 fs soliton spike and pedestal closely matching that expected from simulation (b). Conditions are Δ k = 5.7 π mm , I 50 GW cm 2 , and 25 mm of propagation in BBO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i A 1 Z k 1 2 2 A 1 T 2 + Γ 1 A 1 * A 2 exp ( i Δ k Z ) = 0 ,
i A 2 Z i δ A 2 T k 2 2 2 A 2 T 2 + Γ 2 A 1 2 exp ( i Δ k Z ) = 0 ,
i a 1 ξ 1 2 2 a 1 τ 2 N 2 a 1 2 a 1 = N 2 τ R a 1 2 a 1 τ .

Metrics