Abstract

We define computer-generated volume holograms (CGVHs) as arbitrary 3D refractive index modulations designed to perform optical functions based on diffraction, scattering, and interference phenomena. CGVHs can differ dramatically from classical volume holograms in terms of coding possibilities, and from thin computer-generated holograms in terms of efficiency and selectivity. We propose an encoding technique for designing such holograms and demonstrate the concept by scanning focused femtosecond laser pulses to produce localized refractive index modifications in glass. These CGVHs show a significant increase in efficiency with thickness. Consequently, they are attractive for photonic integration with free-space and guided-wave devices, as well as for encoding spatial and temporal information.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. B. R. Brown and A. W. Lohmann, Appl. Opt. 5, 967 (1966).
    [CrossRef] [PubMed]
  3. O. Bryngdahl and F. Wyrowski, Prog. Opt. 28, 1 (1990).
    [CrossRef]
  4. F. H. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
    [CrossRef]
  6. G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
    [CrossRef]
  7. D. Brady, A. G. S. Chen, and G. Rodriguez, Opt. Lett. 17, 610 (1992).
    [CrossRef] [PubMed]
  8. J. Rosen, M. Segev, and A. Yariv, Opt. Lett. 18, 744 (1993).
    [CrossRef] [PubMed]
  9. R. Piestun, B. Spektor, and J. Shamir, J. Opt. Soc. Am. A 13, 1837 (1996).
    [CrossRef]
  10. H. Bartelt, Appl. Opt. 23, 1499 (1984).
    [CrossRef] [PubMed]
  11. X. Deng and R. T. Chen, Opt. Lett. 25, 1046 (2000).
    [CrossRef]
  12. S. Borgsmuller, S. Noehte, C. Dietrich, T. Kresse, and R. Manner, Appl. Opt. 42, 5274 (2003).
    [CrossRef] [PubMed]
  13. D. M. Chambers, G. P. Nordin, and S. Kim, Opt. Express 11, 27 (2003).
    [CrossRef] [PubMed]
  14. See also W. Cai, T. Reber, and R. Piestun, Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2005), paper CTuEE3.
  15. R. Piestun and J. Shamir, Opt. Lett. 19, 771 (1994).
    [CrossRef] [PubMed]
  16. E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  17. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  18. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, Opt. Lett. 30, 1060 (2005).
    [CrossRef] [PubMed]
  19. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, Opt. Lett. 27, 2200 (2002).
    [CrossRef]
  20. W. Cai, T. Reber, and R. Piestun, presented at Photonics Research, CPIA Annual Meeting, Boulder, Colorado, November 10, 2004.
  21. R. Piestun, presented at Quantum Sensing and Nanophotonic Devices II, Photonics West, San Jose, California, January 23-27, 2005.
  22. Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, Opt. Express 13, 2433 (2005).
    [CrossRef] [PubMed]

2005

See also W. Cai, T. Reber, and R. Piestun, Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2005), paper CTuEE3.

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, Opt. Lett. 30, 1060 (2005).
[CrossRef] [PubMed]

R. Piestun, presented at Quantum Sensing and Nanophotonic Devices II, Photonics West, San Jose, California, January 23-27, 2005.

Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, Opt. Express 13, 2433 (2005).
[CrossRef] [PubMed]

2004

W. Cai, T. Reber, and R. Piestun, presented at Photonics Research, CPIA Annual Meeting, Boulder, Colorado, November 10, 2004.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

2003

2002

2000

1999

1996

1994

1993

1992

1990

O. Bryngdahl and F. Wyrowski, Prog. Opt. 28, 1 (1990).
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

1984

1966

An, R.

Balberg, M.

Barbastathis, G.

Bartelt, H.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

Baumberg, J. J.

Borgsmuller, S.

Brady, D.

Brady, D. J.

Bricchi, E.

Brown, B. R.

Bryngdahl, O.

O. Bryngdahl and F. Wyrowski, Prog. Opt. 28, 1 (1990).
[CrossRef]

Burr, G. W.

Cai, W.

See also W. Cai, T. Reber, and R. Piestun, Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2005), paper CTuEE3.

W. Cai, T. Reber, and R. Piestun, presented at Photonics Research, CPIA Annual Meeting, Boulder, Colorado, November 10, 2004.

Callan, J.

Chambers, D. M.

Chen, A. G. S.

Chen, R. T.

Davis, K. M.

Deng, X.

Dietrich, C.

Dou, Y.

Finlay, R.

Fujimoto, J. G.

Glezer, E.

Gong, Q.

Her, T.

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

Hirao, K.

Huang, L.

Ippen, E. P.

Kazansky, P. G.

Kim, S.

Klappauf, B. G.

Kowalevicz, A. M.

Kresse, T.

Li, Y.

Lohmann, A. W.

Manner, R.

Mazur, E.

Mills, J. D.

Milosavljevic, M.

Minoshima, K.

Miura, K.

Mok, F. H.

Noehte, S.

Nordin, G. P.

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

Piestun, R.

See also W. Cai, T. Reber, and R. Piestun, Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2005), paper CTuEE3.

R. Piestun, presented at Quantum Sensing and Nanophotonic Devices II, Photonics West, San Jose, California, January 23-27, 2005.

W. Cai, T. Reber, and R. Piestun, presented at Photonics Research, CPIA Annual Meeting, Boulder, Colorado, November 10, 2004.

R. Piestun, B. Spektor, and J. Shamir, J. Opt. Soc. Am. A 13, 1837 (1996).
[CrossRef]

R. Piestun and J. Shamir, Opt. Lett. 19, 771 (1994).
[CrossRef] [PubMed]

Psaltis, D.

Reber, T.

See also W. Cai, T. Reber, and R. Piestun, Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2005), paper CTuEE3.

W. Cai, T. Reber, and R. Piestun, presented at Photonics Research, CPIA Annual Meeting, Boulder, Colorado, November 10, 2004.

Rodriguez, G.

Rosen, J.

Segev, M.

Shamir, J.

Sharma, V.

Spektor, B.

Sugimoto, N.

Wyrowski, F.

O. Bryngdahl and F. Wyrowski, Prog. Opt. 28, 1 (1990).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yang, H.

Yariv, A.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Proc. IEEE

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

Prog. Opt.

O. Bryngdahl and F. Wyrowski, Prog. Opt. 28, 1 (1990).
[CrossRef]

Other

W. Cai, T. Reber, and R. Piestun, presented at Photonics Research, CPIA Annual Meeting, Boulder, Colorado, November 10, 2004.

R. Piestun, presented at Quantum Sensing and Nanophotonic Devices II, Photonics West, San Jose, California, January 23-27, 2005.

See also W. Cai, T. Reber, and R. Piestun, Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2005), paper CTuEE3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Computer-generated volume hologram (CGVH) as a modulated 3D crystal structure composed of cells shifted in three dimensions. (b) Schematic representation of the scattering from different cells in the first Born approximation.

Fig. 2
Fig. 2

(a) DIC image of part of the fabricated CGVH. (b) Far-field reconstruction (first-order off-axis 0.12 rad ). (c) Computer simulation of the reconstruction.

Fig. 3
Fig. 3

Increase in the diffraction efficiency with an increasing number of periods of the hologram along the main direction of the propagation of the light.

Tables (1)

Tables Icon

Table 1 Classification of Holograms

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x , y , z ) = k , l , q K , L , Q δ ( x k Δ x + α k , l , q Δ x ) δ ( y l Δ y + β k , l , q Δ y ) δ ( z q Δ z + γ k , l , q Δ z ) p k , l , p ( x , y , z ) ,
H CGVH ( x , y ) q exp [ j Δ φ q ( x , y ) ] H q ( x λ z F , y λ z F ) ,
Δ z ( N , M ) = N λ [ n b ( 1 cos θ M ) ] ,

Metrics