Abstract

A time-resolved confocal fluorescence spectroscopy system is built to measure the fine structure and localized biochemistry of epithelial tissue. It is found that the autofluorescence excited at 405nm is sensitive to the cellular metabolism and can be used to sense the metabolic status of epithelial tissue. The decay of autofluorescence excited at 405nm can be accurately fitted with a dual-exponential function consisting of short lifetime (0.40.6ns) and long lifetime (34ns) components. The ratio of the amplitudes of the two components provides information on the fine structure of epithelial tissue. We demonstrate that the combined depth- and time-resolved measurements with single excitation can potentially provide accurate information for the diagnosis of tissue pathology.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ramanujam, in Encyclopedia of Analytical Chemistry, R.A.Meyers, ed. (Wiley, 2000), pp. 20-56.
  2. Y. Wu, P. Xi, J. Y. Qu, T. Cheung, and M. Yu, Opt. Express 12, 3218 (2004).
    [CrossRef] [PubMed]
  3. Y. Wu, P. Xi, J. Y. Qu, T. Cheung, and M. Yu, Opt. Express 13, 382 (2005).
    [CrossRef] [PubMed]
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).
  5. K. Vishwanath and M.-A. Mycek, Opt. Lett. 29, 1512 (2004).
    [CrossRef] [PubMed]
  6. Y. Wu and J. Y. Qu, Opt. Lett. 30, 3045 (2005).
    [CrossRef] [PubMed]
  7. N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
    [CrossRef]
  8. K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
    [CrossRef]
  9. S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002).
    [CrossRef] [PubMed]
  10. K. Konig and I. Riemann, J. Biomed. Opt. 8, 432 (2003).
    [CrossRef] [PubMed]
  11. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
    [CrossRef]
  12. H. Schneckenburger and K. Konig, Opt. Eng. 31, 1447 (1992).
    [CrossRef]

2005

Y. Wu, P. Xi, J. Y. Qu, T. Cheung, and M. Yu, Opt. Express 13, 382 (2005).
[CrossRef] [PubMed]

Y. Wu and J. Y. Qu, Opt. Lett. 30, 3045 (2005).
[CrossRef] [PubMed]

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

2004

2003

K. Konig and I. Riemann, J. Biomed. Opt. 8, 432 (2003).
[CrossRef] [PubMed]

2002

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002).
[CrossRef] [PubMed]

2000

N. Ramanujam, in Encyclopedia of Analytical Chemistry, R.A.Meyers, ed. (Wiley, 2000), pp. 20-56.

1999

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

1992

H. Schneckenburger and K. Konig, Opt. Eng. 31, 1447 (1992).
[CrossRef]

Brands, W. R.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Brewer, M. A.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Cheung, T.

Drezek, R. A.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Fang, Q.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Galvan, J.

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002).
[CrossRef] [PubMed]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002).
[CrossRef] [PubMed]

Jo, J. A.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Kirkpatrick, N. D.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Konig, K.

K. Konig and I. Riemann, J. Biomed. Opt. 8, 432 (2003).
[CrossRef] [PubMed]

H. Schneckenburger and K. Konig, Opt. Eng. 31, 1447 (1992).
[CrossRef]

Lacy, A.

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

Lotan, R.

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Marcu, L.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Myakov, A.

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Mycek, M.-A.

Papaioannou, T.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Qu, J. Y.

Ramanujam, N.

N. Ramanujam, in Encyclopedia of Analytical Chemistry, R.A.Meyers, ed. (Wiley, 2000), pp. 20-56.

Richard-Kortum, R.

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Riemann, I.

K. Konig and I. Riemann, J. Biomed. Opt. 8, 432 (2003).
[CrossRef] [PubMed]

Schneckenburger, H.

H. Schneckenburger and K. Konig, Opt. Eng. 31, 1447 (1992).
[CrossRef]

Shastry, K.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Sokolo, K.

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Utzinger, U.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Vaitha, R.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Vishwanath, K.

Webb, W. W.

S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002).
[CrossRef] [PubMed]

Wu, Y.

Xi, P.

Yu, M.

Zou, C.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Biophys. J.

S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. Konig and I. Riemann, J. Biomed. Opt. 8, 432 (2003).
[CrossRef] [PubMed]

K. Sokolo, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richard-Kortum, J. Biomed. Opt. 7, 148 (2002).
[CrossRef]

Opt. Eng.

H. Schneckenburger and K. Konig, Opt. Eng. 31, 1447 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).
[CrossRef]

Rev. Sci. Instrum.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, Rev. Sci. Instrum. 75, 151 (2004).
[CrossRef]

Other

N. Ramanujam, in Encyclopedia of Analytical Chemistry, R.A.Meyers, ed. (Wiley, 2000), pp. 20-56.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Depth-resolved fluorescence spectra measured from rabbit esophageal tissue at different excitation wavelengths. Dotted curves, keratinized epithelial layer with depths of 0 30 μ m ; solid curves, nonkeratinized epithelial layer with depths of 40 120 μ m ; dashed curves, stromal layer with depths of 140 200 μ m .

Fig. 2
Fig. 2

(a) Epithelial fluorescence excited at 405 nm fitted with the fluorescence spectra excited at 355 and 435 nm . (b) Variations of autofluorescence of SiHa cells excited at 405 nm when treated with NaCN and CCCP.

Fig. 3
Fig. 3

(a), (c) Time-resolved fluorescence of a nonkeratinized oral tissue and the corresponding histology. (b), (d) Time-resolved fluorescence of a keratinized esophageal tissue and the corresponding histology. K, keratinized layer; E, epithelial layer; S, stromal layer.

Tables (2)

Tables Icon

Table 1 Fluorescence Decay of Chemicals

Tables Icon

Table 2 Fluorescence Decay of Different Tissue Layers a

Metrics