Abstract

An empirical relationship is derived between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds measured by backscatter lidar. This relationship is shown to hold for clouds having a wide range of extinction coefficients, mean droplet sizes, and droplet size distribution widths. The relationship is also shown to persist for various instrument fields of view and for measurements made within broken cloud fields. The results obtained from the Monte Carlo simulations are verified by using multiple-field-of-view lidar measurements. For space-based lidars equipped to measure linear depolarization ratios, this new relationship can be used to accurately assess signal perturbations due to multiple scattering within nonprecipitating water clouds.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Bissonnette, G. Roy, and F. Fabry, J. Atmos. Ocean. Technol. 18, 1429 (2001).
    [CrossRef]
  2. K. Sassen and R. L. Petrilla, Appl. Opt. 25, 1450 (1986).
    [CrossRef] [PubMed]
  3. W. Wiscombe, Appl. Opt. 19, 1505 (1980).
    [CrossRef] [PubMed]
  4. Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
    [CrossRef]
  5. N. J. Miles, J. Verlinde, and E. E. Clothiaux, J. Atmos. Sci. 57, 295 (2000).
    [CrossRef]
  6. C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
    [CrossRef]
  7. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
    [CrossRef]
  8. E. J. O'Connor, A. Illingworth, and R. Hogan, J. Atmos. Ocean. Technol. 21, 777 (2004).
    [CrossRef]

2004

E. J. O'Connor, A. Illingworth, and R. Hogan, J. Atmos. Ocean. Technol. 21, 777 (2004).
[CrossRef]

2001

L. R. Bissonnette, G. Roy, and F. Fabry, J. Atmos. Ocean. Technol. 18, 1429 (2001).
[CrossRef]

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

2000

N. J. Miles, J. Verlinde, and E. E. Clothiaux, J. Atmos. Sci. 57, 295 (2000).
[CrossRef]

1999

C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
[CrossRef]

1986

1983

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

1980

Baum, B.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

Bissonnette, L. R.

L. R. Bissonnette, G. Roy, and F. Fabry, J. Atmos. Ocean. Technol. 18, 1429 (2001).
[CrossRef]

Chylek, P.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

Clothiaux, E. E.

N. J. Miles, J. Verlinde, and E. E. Clothiaux, J. Atmos. Sci. 57, 295 (2000).
[CrossRef]

Fabry, F.

L. R. Bissonnette, G. Roy, and F. Fabry, J. Atmos. Ocean. Technol. 18, 1429 (2001).
[CrossRef]

Grandy, W. T.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

Ham, C.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

Hogan, R.

E. J. O'Connor, A. Illingworth, and R. Hogan, J. Atmos. Ocean. Technol. 21, 777 (2004).
[CrossRef]

Hu, Y.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

Illingworth, A.

E. J. O'Connor, A. Illingworth, and R. Hogan, J. Atmos. Ocean. Technol. 21, 777 (2004).
[CrossRef]

Jennings, S. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

Miles, N. J.

N. J. Miles, J. Verlinde, and E. E. Clothiaux, J. Atmos. Sci. 57, 295 (2000).
[CrossRef]

Miller, S.

C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
[CrossRef]

O'Connor, E. J.

E. J. O'Connor, A. Illingworth, and R. Hogan, J. Atmos. Ocean. Technol. 21, 777 (2004).
[CrossRef]

Petrilla, R. L.

Pinnick, R. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

Platt, C.

C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
[CrossRef]

Poole, L.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

Roy, G.

L. R. Bissonnette, G. Roy, and F. Fabry, J. Atmos. Ocean. Technol. 18, 1429 (2001).
[CrossRef]

Sassen, K.

Vann, L.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

Vaughan, M.

C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
[CrossRef]

Verlinde, J.

N. J. Miles, J. Verlinde, and E. E. Clothiaux, J. Atmos. Sci. 57, 295 (2000).
[CrossRef]

Winker, D.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
[CrossRef]

Wiscombe, W.

Yang, P.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

Appl. Opt.

J. Appl. Meteorol.

C. Platt, D. Winker, M. Vaughan, and S. Miller, J. Appl. Meteorol. 38, 1330 (1999).
[CrossRef]

J. Atmos. Ocean. Technol.

E. J. O'Connor, A. Illingworth, and R. Hogan, J. Atmos. Ocean. Technol. 21, 777 (2004).
[CrossRef]

L. R. Bissonnette, G. Roy, and F. Fabry, J. Atmos. Ocean. Technol. 18, 1429 (2001).
[CrossRef]

J. Atmos. Sci.

N. J. Miles, J. Verlinde, and E. E. Clothiaux, J. Atmos. Sci. 57, 295 (2000).
[CrossRef]

J. Geophys. Res.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, Jr., J. Geophys. Res. 88, 6787 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, J. Quant. Spectrosc. Radiat. Transf. 70, 569 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Empirically derived relation between A s and δ acc . The relation is valid for a variety of extinction coefficients, particle size distributions, cloud geometries, and lidar FOVs.

Fig. 2
Fig. 2

Lidar profiles of eight different FOVs. (a) Range-corrected lidar backscatter profiles. (b) Corresponding depolarization ratio profiles.

Fig. 3
Fig. 3

(a) Deriving the single-scattering component from the MFOV lidar observations through extrapolations. (b) Comparison between the eight FOV lidar observations with the A s δ acc relation of Eq. (3).

Tables (1)

Tables Icon

Table 1 Model Parameters for Simulation Results Shown in Fig. 1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A S ( r ) = I S ( r ) I T ( r ) ,
δ acc ( r ) = I T , ( r ) I T , ( r ) ,
A s = 0.999 3.906 δ acc + 6.263 δ acc 2 3.554 δ acc 3 .

Metrics