Abstract

We present a multiple parameter integrated fiber sensor that can detect vector bending and ambient temperature simultaneously with a single asymmetric multimode fiber Bragg grating. Multimode Bragg gratings were fabricated in an all-silica core fiber by an infrared femtosecond laser, which showed multiple transmission dips in the transmission spectrum. Bending and ambient temperature fluctuations affect the shapes of multiple transmission dips in different ways. In bending, different dips have different sensitivities. On the other hand, temperature fluctuations tended to influence the dips uniformly across different dips. By analyzing the changing spectrum of dips, one can distinguish the changes induced by bending or temperature fluctuations. Furthermore, the high thermal stability of Bragg gratings inscribed by an infrared femtosecond laser can make this double parameter fiber sensor work in very harsh, high-temperature environments.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription