Abstract

We demonstrate a simple, all-fiber technique for removing nonlinear phase due to self-phase modulation in fiber-based chirped-pulse amplification (CPA) systems. Using a LiNbO3 electro-optic phase modulator to emulate a negative nonlinear index of refraction, we are able to remove 1.0πrad of self-phase modulation acquired by pulses during amplification and eliminate nearly all pulse distortion. Our technique is high speed, removes nonlinear phase on a pulse-to-pulse basis, and can be readily integrated into existing CPA systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
    [Crossref]
  2. M. D. Perry, T. Ditmire, and B. C. Stuart, Opt. Lett. 19, 2149 (1994).
    [Crossref] [PubMed]
  3. O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
    [Crossref]
  4. A. Braun, S. Kane, and T. Norris, Opt. Lett. 22, 615 (1997).
    [Crossref] [PubMed]
  5. A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
    [Crossref]
  6. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and E. Fermann, Opt. Express 13, 4717 (2005).
    [Crossref] [PubMed]
  7. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, Opt. Express 13, 4869 (2005).
    [Crossref] [PubMed]
  8. J. Hansryd, J. van Howe, and C. Xu, IEEE Photon. Technol. Lett. 17, 232 (2005).
    [Crossref]
  9. F. Cattani, D. Anderson, A. Berntson, and M. Lisak, J. Opt. Soc. Am. B 16, 1874 (1999).
    [Crossref]
  10. C. Xu, L. Mollenauer, and X. Liu, Electron. Lett. 38, 1578 (2002).
    [Crossref]
  11. G. Imeshev, I. Hartl, and E. Fermann, Opt. Express 12, 6508 (2004).
    [Crossref] [PubMed]

2005 (3)

2004 (1)

2002 (1)

C. Xu, L. Mollenauer, and X. Liu, Electron. Lett. 38, 1578 (2002).
[Crossref]

2001 (1)

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[Crossref]

2000 (1)

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

1999 (1)

1998 (1)

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[Crossref]

1997 (1)

1994 (1)

Anderson, D.

Berntson, A.

Braun, A.

Cattani, F.

Cho, G.

Chong, A.

Ditmire, T.

Effimov, A.

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Fermann, E.

Galvanauskas, A.

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[Crossref]

Hansryd, J.

J. Hansryd, J. van Howe, and C. Xu, IEEE Photon. Technol. Lett. 17, 232 (2005).
[Crossref]

Hartl, I.

Imeshev, G.

Kane, S.

Konoplev, O. A.

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[Crossref]

Krause, J. L.

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Kuznetsova, L.

Lisak, M.

Liu, X.

C. Xu, L. Mollenauer, and X. Liu, Electron. Lett. 38, 1578 (2002).
[Crossref]

Liu, Z.

Mei, B.

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Meyerhofer, D. D.

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[Crossref]

Mollenauer, L.

C. Xu, L. Mollenauer, and X. Liu, Electron. Lett. 38, 1578 (2002).
[Crossref]

Moores, M. D.

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Norris, T.

Perry, M. D.

Reitze, D. H.

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Shah, L.

Siders, C. W.

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Stuart, B. C.

van Howe, J.

J. Hansryd, J. van Howe, and C. Xu, IEEE Photon. Technol. Lett. 17, 232 (2005).
[Crossref]

Wise, F.

Xu, C.

J. Hansryd, J. van Howe, and C. Xu, IEEE Photon. Technol. Lett. 17, 232 (2005).
[Crossref]

C. Xu, L. Mollenauer, and X. Liu, Electron. Lett. 38, 1578 (2002).
[Crossref]

Zhou, S.

Appl. Phys. B (1)

A. Effimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, Appl. Phys. B 70, S133 (2000).
[Crossref]

Electron. Lett. (1)

C. Xu, L. Mollenauer, and X. Liu, Electron. Lett. 38, 1578 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[Crossref]

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Hansryd, J. van Howe, and C. Xu, IEEE Photon. Technol. Lett. 17, 232 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. C, collimator; G, grating; M, mirror; PD, photodetector; PM, phase modulator; EDFA, erbium doped fiber amplifier; DCF, dispersion compensating fiber.

Fig. 2
Fig. 2

Oscilloscope time trace of the stretched optical pulse (solid curve) and electrical signal (dashed curve) into the phase modulator. Pulse widths as measured by the 30 GHz sampling scope are 136 and 151 ps , respectively.

Fig. 3
Fig. 3

Autocorrelation traces. (a) without compensation for a nonlinear phase shift of 1.0 π rad , (b) with 1.0 π rad of compensation. Insets, simulated traces.

Fig. 4
Fig. 4

Autocorrelation trace for a nonlinear phase shift of 1.0 π rad and an optimally mismatched grating compressor. Inset, simulated trace.

Metrics