Abstract

A simple setup for generating evanescent Bessel beams is proposed. When a radially polarized beam is strongly focused onto a dielectric–metal interface, the entire beam is p-polarized with respect to the dielectric–metal interface, enabling excitation of surface plasmons from all directions. The angular selectivity of surface plasmon excitation mimics the function of an axicon, leading to an evanescent nondiffracting Bessel beam. The created evanescent Bessel beam may be used as a virtual probe for near-field optical imaging and sensing applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  3. S. Ruschin and A. Leizer, J. Opt. Soc. Am. A 15, 1139 (1998).
    [CrossRef]
  4. W. B. Williams and J. B. Pendry, J. Opt. Soc. Am. A 22, 992 (2005).
    [CrossRef]
  5. T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
    [CrossRef] [PubMed]
  6. E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).
    [CrossRef]
  7. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
    [CrossRef]
  8. E. Descrovi, V. Paeder, L. Vaccaro, and H. P. Herzig, Opt. Express 13, 7017 (2005).
    [CrossRef] [PubMed]
  9. Q. Zhan, Opt. Lett. 31, 867 (2006).
    [CrossRef] [PubMed]

2006

2005

2003

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

1998

1987

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

1959

E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).
[CrossRef]

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

Descrovi, E.

Durnin, J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Grosjean, T.

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

Herzig, H. P.

Leizer, A.

Miceli, J. J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Paeder, V.

Pendry, J. B.

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Ruschin, S.

Vaccaro, L.

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

Williams, W. B.

Wolf, E.

E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).
[CrossRef]

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Zhan, Q.

J. Microsc.

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).
[CrossRef]

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the proposed setup for evanescent Bessel beam generation. An aplanatic lens focuses the radially polarized input onto a dielectric–metal interface. The space between the lens and the substrate (dashed lines) is filled with index-matching material with the same refractive index as the substrate. Due to the polarization symmetry, the entire beam is p-polarized with respect to the interface.

Fig. 2
Fig. 2

Calculated magnitude of the (a) reflection coefficient and (b) transmission coefficient versus incident angles for p-polarized light incident on the dielectric–metal interface. The SPR condition is satisfied at θ s p = 45.45 ° .

Fig. 3
Fig. 3

Simulated intensity distribution at the back focal plane of the objective lens after reflection. The dark ring corresponds to the SPR excitation.

Fig. 4
Fig. 4

Numerical simulation results using vectorial diffraction theory. (a) Total field strength E 2 at the bottom of the silver layer ( z = 0 ) for radial polarization, (b) total field strength E 2 at the bottom of the silver layer for linear polarization illumination as a comparison, (c) linescan of (a) through the center. The longitudinal component E z 2 (dashed curve) and the transverse component E r 2 (dashed–dotted curve) are also shown. (d) Total field strength E 2 along the z axis, showing the evanescent decay.

Fig. 5
Fig. 5

(a) Transverse profiles of the longitudinal component E z 2 at different distances from the bottom of silver layer. (b) Normalized plot of (a). It can be seen that the main lobe shape of the beam remains almost constant.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E r ( r , φ , z ) = 2 A 0 θ max cos 1 2 ( θ ) P ( θ ) t p ( θ ) sin θ cos θ J 1 ( k 1 r sin θ ) exp [ i z ( k 2 2 k 1 2 sin 2 θ ) 1 2 ] d θ ,
E z ( r , φ , z ) = i 2 A 0 θ max cos 1 2 ( θ ) P ( θ ) t p ( θ ) sin 2 θ J 0 ( k 1 r sin θ ) exp [ i z ( k 2 2 k 1 2 sin 2 θ ) 1 2 ] d θ ,
E r ( r , φ , z ) = 2 A cos 1 2 ( θ sp ) P ( θ sp ) t p ( θ sp ) sin ( θ sp ) cos ( θ sp ) J 1 ( k 1 r sin θ sp ) exp [ i z ( k 2 2 k 1 2 sin 2 θ sp ) 1 2 ] ,
E z ( r , φ , z ) = i 2 A cos 1 2 ( θ sp ) P ( θ sp ) t p ( θ sp ) sin 2 ( θ sp ) J 0 ( k r sin θ sp ) exp [ i z ( k 2 2 k 1 2 sin 2 θ sp ) 1 2 ] .

Metrics