Abstract

We report the first realization of a cw solid-state dye laser. The laser medium consists of a laser dye (Rhodamine 6G) dissolved in a photopolymer. The UV-cured solution is sandwiched between two DVD substrates. The resonator design was derived from a conventional liquid solvent dye laser geometry. The laser radiation can be tuned from 565  to  615nm by using a birefringent filter. A pump power of 2W leads to a cw output power of more than 20mW.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F.P.Schäfer, ed., Dye Lasers, 3rd ed. (Springer-Verlag, 1990).
  2. O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
    [CrossRef]
  3. B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
    [CrossRef]
  4. F. J. Duarte, Opt. Photon. News, October 2003, p. 20.
  5. A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
    [CrossRef]
  6. D. P. Pacheco, W. H. Russell, and H. R. Aldag, in Proc. SPIE 5332, 180 (2004).
  7. R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
    [CrossRef]
  8. P. K. Runge and R. Rosenberg, IEEE J. Quantum Electron. 8, 910 (1972).
    [CrossRef]
  9. I. G. Kytina, V. G. Kytin, and K. Lips, Appl. Phys. Lett. 84, 4902 (2004).
    [CrossRef]
  10. A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
    [CrossRef]
  11. H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
    [CrossRef]
  12. E. Thiel, in Ullmann's Encyclopedia of Industrial Chemistry, release 2005, 7th ed. (Wiley-VCH, 2004).

2004

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

I. G. Kytina, V. G. Kytin, and K. Lips, Appl. Phys. Lett. 84, 4902 (2004).
[CrossRef]

2001

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

1972

H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
[CrossRef]

P. K. Runge and R. Rosenberg, IEEE J. Quantum Electron. 8, 910 (1972).
[CrossRef]

1970

O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

1967

B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Aldag, H. R.

D. P. Pacheco, W. H. Russell, and H. R. Aldag, in Proc. SPIE 5332, 180 (2004).

Amat-Guerri, F.

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

Costela, A.

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

Coutts, D. W.

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

Dienes, A.

H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
[CrossRef]

Duarte, F. J.

F. J. Duarte, Opt. Photon. News, October 2003, p. 20.

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

Gomez, C.

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
[CrossRef]

Ishchenko, A. A.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
[CrossRef]

Kytin, V. G.

I. G. Kytina, V. G. Kytin, and K. Lips, Appl. Phys. Lett. 84, 4902 (2004).
[CrossRef]

Kytina, I. G.

I. G. Kytina, V. G. Kytin, and K. Lips, Appl. Phys. Lett. 84, 4902 (2004).
[CrossRef]

Lips, K.

I. G. Kytina, V. G. Kytin, and K. Lips, Appl. Phys. Lett. 84, 4902 (2004).
[CrossRef]

McFarland, B. B.

B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Pacheco, D. P.

D. P. Pacheco, W. H. Russell, and H. R. Aldag, in Proc. SPIE 5332, 180 (2004).

Peterson, O. G.

O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Reisfeld, R.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

Rosenberg, R.

P. K. Runge and R. Rosenberg, IEEE J. Quantum Electron. 8, 910 (1972).
[CrossRef]

Runge, P. K.

P. K. Runge and R. Rosenberg, IEEE J. Quantum Electron. 8, 910 (1972).
[CrossRef]

Russell, W. H.

D. P. Pacheco, W. H. Russell, and H. R. Aldag, in Proc. SPIE 5332, 180 (2004).

Saraidarov, T.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

Sastre, R.

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

Shank, C. V.

H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
[CrossRef]

Snavely, B. B.

O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Soffer, B. H.

B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Thiel, E.

E. Thiel, in Ullmann's Encyclopedia of Industrial Chemistry, release 2005, 7th ed. (Wiley-VCH, 2004).

Tuccio, S. A.

O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Webb, C. E.

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

Weiss, A.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

Yariv, E.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

Appl. Phys. Lett.

O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, and R. Sastre, Appl. Phys. Lett. 79, 305 (2001).
[CrossRef]

I. G. Kytina, V. G. Kytin, and K. Lips, Appl. Phys. Lett. 84, 4902 (2004).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, Appl. Phys. Lett. 79, 452 (2001).
[CrossRef]

IEEE J. Quantum Electron.

H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).
[CrossRef]

P. K. Runge and R. Rosenberg, IEEE J. Quantum Electron. 8, 910 (1972).
[CrossRef]

Polym. Adv. Tech.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Tech. 15, 291 (2004).
[CrossRef]

Other

F.P.Schäfer, ed., Dye Lasers, 3rd ed. (Springer-Verlag, 1990).

E. Thiel, in Ullmann's Encyclopedia of Industrial Chemistry, release 2005, 7th ed. (Wiley-VCH, 2004).

D. P. Pacheco, W. H. Russell, and H. R. Aldag, in Proc. SPIE 5332, 180 (2004).

F. J. Duarte, Opt. Photon. News, October 2003, p. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the laser resonator design. The solid-state dye laser disc (DLD) is rotated by a motor (M). The cavity consists of a high reflector (HR) with a radius of curvature of 50 mm , a fold mirror (FM) with r = 75 mm , and a flat output coupler (OC, T = 1 % ). An optional birefringent filter (BRF) allows the tuning of the laser. The laser is pumped longitudinally by a cw solid-state laser operating at 532 nm . The pump beam is focused into the active polymer layer through an achromatic lens ( f = 100 mm ). The inset shows a scheme of the DLD consisting of two DVD substrates S1 and S2 and the actual dye/photopolymer layer DL.

Fig. 2
Fig. 2

Input–output characteristic of the cw solid-state dye laser.

Fig. 3
Fig. 3

Real-time transient output signal measured with a photodiode.

Fig. 4
Fig. 4

Tuning curve of the solid-state dye laser. The dashed curve is a guide to the eye based on a 10-data-point sliding average.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

100 μ m
sin θ tan θ = N d f ,
N = ( n 2 1 ) n 2 + 1 n 4 ,

Metrics