Abstract

We describe a new method for determining the homogeneous upconversion coefficient by using only three measurements: two fluorescence decays as a function of time and the relationship of normalized fluorescence with excitation power. This technique results in increased accuracy upon employment of a smaller number of measurements. Specifically, the intermediate steps of finding the absorption cross section of the doped material, the emission spectrum of the pumping source, and its spatial power distribution are not necessary. Our technique employs only one experimental setup: changing the pumping conditions. Furthermore, it incorporates dual-function fitting to reduce the uncertainty and error propagation. This method will find ample applications in the study and characterization of erbium-doped materials used in lasers and optical amplifiers, where precise knowledge of efficiency and losses is of uppermost importance.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, andH. J. Shaw, Opt. Lett. 19, 347 (1993).
    [CrossRef]
  2. B. N. Samson, W. H. Loh, and J. P. de Sandro, Opt. Lett. 22, 1763 (1997).
    [CrossRef]
  3. X. Dong, N. Q. Ngo, and P. Shum, Opt. Lett. 29, 358 (2004).
    [CrossRef] [PubMed]
  4. D. Khoptyar and B. Jaskorzynska, J. Opt. Soc. Am. B 22, 2091 (2005).
    [CrossRef]
  5. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, J. Opt. Soc. Am. B 17, 833 (2000).
    [CrossRef]
  6. T. Ohtsuki and S. Honkanen, J. Opt. Soc. Am. B 14, 1838 (1997).
    [CrossRef]
  7. W. Q. Shi, M. Bass, and M. Birnbaum, J. Opt. Soc. Am. B 7, 1456 (1990).
    [CrossRef]
  8. L. A. Riseberg and M. J. Weber, in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, 1976).
  9. J. Thogersen and N. Bjerre, Opt. Lett. 18, 193 (1993).
  10. Y. Hu and S. Jiang, J. Opt. Soc. Am. B 18, 1928 (2001).
    [CrossRef]
  11. D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
    [CrossRef]
  12. M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, Opt. Lett. 22, 722 (1997).
    [CrossRef]
  13. P. Myslinski, D. Nguyen, and J. Chrostowski, J. Lightwave Technol. 15, 112 (1997).
    [CrossRef]

2005 (1)

2004 (1)

2001 (1)

2000 (1)

1997 (4)

T. Ohtsuki and S. Honkanen, J. Opt. Soc. Am. B 14, 1838 (1997).
[CrossRef]

B. N. Samson, W. H. Loh, and J. P. de Sandro, Opt. Lett. 22, 1763 (1997).
[CrossRef]

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, Opt. Lett. 22, 722 (1997).
[CrossRef]

P. Myslinski, D. Nguyen, and J. Chrostowski, J. Lightwave Technol. 15, 112 (1997).
[CrossRef]

1993 (2)

1991 (1)

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

1990 (1)

Afzal, R. S.

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

Aggarwal, I.

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

Bass, M.

Birnbaum, M.

Bjerre, N.

J. Thogersen and N. Bjerre, Opt. Lett. 18, 193 (1993).

Chrostowski, J.

P. Myslinski, D. Nguyen, and J. Chrostowski, J. Lightwave Technol. 15, 112 (1997).
[CrossRef]

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, Opt. Lett. 22, 722 (1997).
[CrossRef]

de Sandro, J. P.

Digonnet, M. J. F.

Dong, X.

Gosnell, T. R.

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, Opt. Lett. 22, 722 (1997).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, Opt. Lett. 22, 722 (1997).
[CrossRef]

Honkanen, S.

Hu, Y.

Hwang, B.-C.

Jaskorzynska, B.

Jiang, S.

Khoptyar, D.

Loh, W. H.

Luo, T.

Myslinski, P.

P. Myslinski, D. Nguyen, and J. Chrostowski, J. Lightwave Technol. 15, 112 (1997).
[CrossRef]

Ngo, N. Q.

Nguyen, D.

P. Myslinski, D. Nguyen, and J. Chrostowski, J. Lightwave Technol. 15, 112 (1997).
[CrossRef]

Ohtsuki, T.

Peyghambarian, N.

Riseberg, L. A.

L. A. Riseberg and M. J. Weber, in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, 1976).

Samson, B. N.

Scheider, I.

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

Shaw, H. J.

Shi, W. Q.

Shum, P.

Sibley, W. A.

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

Sorbello, G.

Thogersen, J.

J. Thogersen and N. Bjerre, Opt. Lett. 18, 193 (1993).

Wagener, J. L.

Watson, J.

Weber, M. J.

L. A. Riseberg and M. J. Weber, in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, 1976).

Wysocki, P. F.

Yeh, D. C.

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

J. Appl. Phys. (1)

D. C. Yeh, W. A. Sibley, I. Scheider, R. S. Afzal, and I. Aggarwal, J. Appl. Phys. 69, 1648 (1991).
[CrossRef]

J. Lightwave Technol. (1)

P. Myslinski, D. Nguyen, and J. Chrostowski, J. Lightwave Technol. 15, 112 (1997).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Lett. (5)

Other (1)

L. A. Riseberg and M. J. Weber, in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to determine the upconversion coefficient in erbium-doped fibers.

Fig. 2
Fig. 2

Normalized fluorescence intensity I f d as a function of time after a wide pumping pulse. The analytical function N 2 d is evaluated using ρ C = 83.5 s 1 and max ( R 13 ) = 1872 s 1 . For comparison, a single exponential function is included (dotted line).

Fig. 3
Fig. 3

Normalized fluorescence intensity I f s as function of normalized pumping rate R 13 max ( R 13 ) . The analytical function N 2 s is evaluated using ρ C = 83.5 s 1 and max ( R 13 ) = 1872 s 1 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N 1 d t = R 13 N 1 + A 21 N 2 + ρ C N 2 2 ,
d N 2 d t = A 21 N 2 + A 32 N 3 ρ C N 2 2 ,
d N 3 d t = R 13 N 1 A 32 N 3 ,
N 1 + N 2 + N 3 = 1 ,
N 2 d ( t ) = A 21 [ ( A 21 N 2 d ( 0 ) + ρ C ) exp ( A 21 t ) ρ C ] 1 ,
N 2 s ( R 13 ) = R 13 + A 21 2 ρ C [ ( 1 + 4 ρ C R 13 ( R 13 + A 21 ) 2 ) 1 2 1 ] ,

Metrics