Abstract

Brillouin mirrors based on a single-mode optical fiber provide the simplest, completely passive, and most universal way to produce nanosecond pulses with extensive wavelength tunability. We propose an all-fiber solution, where a passively Q-switched Er-doped Briilouin fiber laser pumped by a low-power laser diode produces pulses with a peak/average power contrast of 500W25mW and, in association with a conventional dispersion-shifted fiber employed as an extracavity nonlinear medium, causes the generation of a nanosecond supercontinuum extending from 900 to over 1800nm. Expanding evolution of the spectrum kicked off by the multicascade Brillouin process is reported.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
    [CrossRef]
  2. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, Opt. Lett. 28, 1820 (2004).
    [CrossRef]
  3. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997).
    [CrossRef] [PubMed]
  4. A. A. Fotiadi, P. Mégret, and M. Blondel, Opt. Lett. 29, 1078 (2004).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Elsevier, 2001).

2004 (2)

2001 (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

1997 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Elsevier, 2001).

Blondel, M.

Chernikov, S. V.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Fotiadi, A. A.

Gapontsev, V. P.

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, Opt. Lett. 28, 1820 (2004).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Mégret, P.

Mussot, A.

Provino, L.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, Opt. Lett. 28, 1820 (2004).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Sylvestre, T.

Taylor, J. R.

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Zhu, Y.

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

Opt. Lett. (3)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Elsevier, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Configuration of the broadband nanosecond pulse source. (b) 25 mW average power pulse train recorded with an InGaAs photodetector. (c) Experimental dependencies of the average output power and the pulse period on the laser diode power. SMF, single-mode fiber; WDM, wavelength division multiplexing.

Fig. 2
Fig. 2

Normalized output spectra of the broadband source (black curves) and the Er–Brillouin laser (gray curves). Average output power is 25 mW . Inset, linear scale.

Fig. 3
Fig. 3

Optical spectra recorded without (curve 0) and with (curves 1–9) the spectrum correction realized through coiling the output fiber. Curves 1–8, coil diameter 12 mm , 1–8 turns; curve 9, coil diameter 4 mm , 8 turns.

Fig. 4
Fig. 4

Typical pulse traces recorded with the InGaAs photodetector for the Er–Brillouin laser (a) and for the supercontinuum source (b) without and (c), (d) with spectrum correction. The pulses (b)–(d) correspond to the spectra shown in Fig. 3 by the curves 0, 8, and 9, respectively.

Metrics