Abstract

By using the concept of a stationary rescaled pulse (SRP), we analyze an adiabatic soliton compression system based on dispersion-decreasing fiber (DDF). We show that a SRP can exist in a DDF with a linearly decreasing dispersion profile and that the SRP resembles a linearly chirped sech2 pulse. According to the analysis, we show numerically that pedestal-free pulse compression is possible by using the SRP.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, see S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991) and references therein.
  2. K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 319 (1999).
    [CrossRef]
  3. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
    [CrossRef]
  4. M. D. Pelusi and H.-F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
    [CrossRef]
  5. T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  7. Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).
    [CrossRef]
  8. Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
    [CrossRef]
  9. J. D. Moores, Opt. Lett. 21, 555 (1996).
    [CrossRef] [PubMed]
  10. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett. 90, 113902 (2003).
    [CrossRef] [PubMed]

2005 (2)

T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
[CrossRef]

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

2003 (1)

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

1999 (1)

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 319 (1999).
[CrossRef]

1997 (3)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

M. D. Pelusi and H.-F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).
[CrossRef]

1996 (1)

1991 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Chernikov, S. V.

Chu, P. L.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Hatami-Hanza, H.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

Hiroishi, J.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

Igarashi, K.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

Inoue, T.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
[CrossRef]

Kodama, Y.

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Kumar, S.

Liu, H.-F.

M. D. Pelusi and H.-F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

Mamyshev, P. V.

Maruta, A.

Moores, J. D.

Mostofi, A.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

Nakazawa, M.

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 319 (1999).
[CrossRef]

Namiki, S.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
[CrossRef]

Ozeki, Y.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

Peacock, A. C.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Pelusi, M. D.

M. D. Pelusi and H.-F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

Sakano, M.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

Sugizaki, R.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

Takasaka, S.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

Tamura, K. R.

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 319 (1999).
[CrossRef]

Tobioka, H.

T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

M. D. Pelusi and H.-F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano, and S. Namiki, IEEE Photon. Technol. Lett. 17, 1698 (2005).
[CrossRef]

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 11, 319 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. E (1)

T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
[CrossRef]

Phys. Rev. Lett. (1)

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Numerically calculated SRPs. The rate of pulse compression S is set to (i) 0.1 , (ii) 0.125 , and (iii) 0.166 . (a) Intensity waveform (solid curve) and instantaneous frequency (broken curve). (b) Intensity waveform in a logarithmic scale. (c) Spectrum.

Fig. 2
Fig. 2

Dependence of numerically calculated SRPs on S. (a) Peak power (open circles) and pulse width (filled circles). (b) Chirp parameter (open circles).

Fig. 3
Fig. 3

(a) Waveforms and (b) spectra of compressed pulses in a DDF with various input pulses. Inset, close-up of the center part of the spectra. Input pulse: a chirp-free fundamental soliton (broken curve), a chirped soliton with a chirp parameter of 0.1 (dashed curve), numerically calculated SRP (solid curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i E ξ = D ( ξ ) 2 2 E τ 2 E 2 E ,
E ( ξ , τ ) = R 1 2 ( ξ ) E 0 [ τ R ( ξ ) ] exp i ϕ ( ξ ) ,
i 2 R ξ E 0 ( τ ) i τ R ξ E 0 ( τ ) τ R ϕ ξ E 0 ( τ ) = D 2 R 2 E 0 ( τ ) τ 2 E 0 ( τ ) 2 E 0 ( τ ) ,
D ( ξ ) = R ( ξ ) = 1 S ξ , ξ < 1 S ,
ϕ ( ξ ) = ( k S ) log ( 1 S ξ ) + ϕ 0 , ξ < 1 S ,
Φ = S τ 2 2 ,
k A = 1 2 d 2 A d τ 2 + A 3 + 1 2 S 2 τ 2 A .
U ( τ ) = A 2 S 2 τ 2 2 .

Metrics