Abstract

Tilt tolerance of media is compared for bit-based and page-based holographic storage systems having an equal diffraction efficiency per bit detector, dynamic range of the medium, and surface recording density. We have formalized the diffraction efficiency degradation caused by aberrations of a reconstructing reference beam induced by tilt of the medium, using a coupled wave theory in the Fourier domain. The bit-based holographic storage system has a larger media tilt tolerance compared with a page-based system with relatively large page size.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, and R. Snyder, Appl. Opt. 43, 4902 (2004).
    [CrossRef] [PubMed]
  2. H. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, IEEE J. Sel. Top. Quantum Electron. 4, 840 (1998).
    [CrossRef]
  3. R. McLeord, A. Daiber, M. McDonald, T. Robertson, T. Siagle, S. Sochava, and L. Hesselink, Appl. Opt. 44, 3197 (2005).
    [CrossRef]
  4. Y. Korzinin and V. Sukhanov, Opt. Spectrosc. 56, 467 (1984).
  5. Y. Korzinin, Opt. Spectrosc. 59, 124 (1985).
  6. M. Bashaw, J. Heanue, A. Aharoni, J. Walkup, and L. Hesselink, J. Opt. Soc. Am. B 11, 1820 (1994).
    [CrossRef]
  7. F. Mok, G. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  8. S. Stallinga, Appl. Opt. 44, 849 (2005).
    [CrossRef] [PubMed]
  9. V. Mahajan, J. Opt. Soc. Am. A 22, 1824 (2005).
    [CrossRef]

2005 (3)

2004 (1)

1998 (1)

H. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, IEEE J. Sel. Top. Quantum Electron. 4, 840 (1998).
[CrossRef]

1996 (1)

1994 (1)

1985 (1)

Y. Korzinin, Opt. Spectrosc. 59, 124 (1985).

1984 (1)

Y. Korzinin and V. Sukhanov, Opt. Spectrosc. 56, 467 (1984).

Aharoni, A.

Bashaw, M.

Bjornson, E.

Burr, G.

Daiber, A.

Eichler, H.

H. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, IEEE J. Sel. Top. Quantum Electron. 4, 840 (1998).
[CrossRef]

Heanue, J.

Hesselink, L.

Korzinin, Y.

Y. Korzinin, Opt. Spectrosc. 59, 124 (1985).

Y. Korzinin and V. Sukhanov, Opt. Spectrosc. 56, 467 (1984).

Kuemmel, P.

H. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, IEEE J. Sel. Top. Quantum Electron. 4, 840 (1998).
[CrossRef]

Mahajan, V.

McDonald, M.

McLeord, R.

Mok, F.

Okas, R.

Orlic, S.

H. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, IEEE J. Sel. Top. Quantum Electron. 4, 840 (1998).
[CrossRef]

Orlov, S.

Phillips, W.

Psaltis, D.

Robertson, T.

Siagle, T.

Snyder, R.

Sochava, S.

Stallinga, S.

Sukhanov, V.

Y. Korzinin and V. Sukhanov, Opt. Spectrosc. 56, 467 (1984).

Sundaram, P.

Takashima, Y.

Walkup, J.

Wappelt, A.

H. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, IEEE J. Sel. Top. Quantum Electron. 4, 840 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Tilt tolerance of the bit-based and page-based holographic recording systems with different page sizes N as a function of numerical aperture of the optics for D 3 d = 80   bits μ m 2 and Δ η = 0.2 .

Tables (1)

Tables Icon

Table 1 Relative Diffraction Efficiency

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S ̂ ( k ) = i ( n 1 U 0 ) L K ( k ) exp [ i ξ ( k , L ) ] sinc [ ξ ( k , L ) ] × [ S ̂ i ( k ) [ R ̂ i ( k ) R ̂ c ( k ) ] ] ,
S ̂ ( k ) = i ( n 1 U 0 ) L [ S ̂ i ( k ) [ R ̂ i ( k ) R ̂ c ( k ) ] ] R ̂ i ( k ) .
η Abe η 0 = d k S ̂ Abe ( k ) 2 d k S ̂ ( k ) 2 = d r S Abe ( r ) 2 d r S ( r ) 2 = d r S i 2 R i 4 R c Abe 2 d r S i 2 R i 4 R c 2 .
η Abe η 0 d x d y S i 2 R i 4 R c Abe 2 d x d y S i 2 R i 4 R c 2 .
η Abe η 0 d x d y exp [ 6 γ r 2 ] exp [ γ r 2 ] FT { exp [ j β ϕ ( k x , k y ) ] } 2 d x d y exp [ 6 γ r 2 ] exp [ γ r 2 ] 2 = { exp [ π k 2 6 γ ] OTF Abe } k x , y = 0 { exp [ π k 2 6 γ ] OTF } k x , y = 0 ,
η Abe η 0 1 ( 4 π 2 λ 2 ) σ 2 ,
η b = M # 2 M b 4 ( M # 0 L b ) 2 M b 4 = ( π M # 0 5 λ D 3 d ) 2 ,
θ b = λ κ Δ η 2 π L b F [ NA b , n ] = κ Δ η NA b 4 40 π 2 D 3 d λ 2 F [ NA b , n ] ,
η p = 1 N ( M # M p ) 2 1 N ( M # 0 L p M p ) 2 = ( M # 0 L p NA p 2 N D 3 d λ 2 ) 2 ,
θ p = 5 NA p 2 sinc 1 [ 1 Δ η ] π 2 N ,

Metrics