Abstract

A 1×2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight and P. St. J. Russell, Science 296, 276 (2002).
    [CrossRef] [PubMed]
  2. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, Opt. Express 11, 818 (2003).
    [CrossRef] [PubMed]
  3. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, Opt. Lett. 28, 1224 (2003).
    [CrossRef] [PubMed]
  4. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, Opt. Lett. 29, 2408 (2004).
    [CrossRef] [PubMed]
  5. L. Fu, X. Gan, and M. Gu, Opt. Express 13, 5528 (2005).
    [CrossRef] [PubMed]
  6. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
    [CrossRef]
  7. D. Bird and M. Gu, Opt. Lett. 27, 1031 (2002).
    [CrossRef]
  8. D. Bird and M. Gu, Opt. Lett. 28, 1552 (2003).
    [CrossRef] [PubMed]
  9. L. Fu, X. Gan, and M. Gu, Opt. Lett. 30, 385 (2005).
    [CrossRef] [PubMed]
  10. J. R. Salgueiro and Y. S. Kivshar, Opt. Lett. 30, 1858 (2005).
    [CrossRef] [PubMed]
  11. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. Paek, and G. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]
  12. H. Kim, J. Kim, U. Paek, B. Lee, and K. T. Kim, Opt. Lett. 29, 1194 (2004).
    [CrossRef] [PubMed]
  13. Y. Kim, Y. Jeong, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, Opt. Lett. 30, 2697 (2005).
    [CrossRef] [PubMed]
  14. J. J. Larsen and G. Vienne, Opt. Lett. 29, 436 (2004).
    [CrossRef] [PubMed]

2005

2004

2003

2002

Baker, J. R.

Bird, D.

Bouma, B. E.

Bouwmans, G.

Broeng, J.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
[CrossRef]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
[CrossRef]

Eom, J. B.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
[CrossRef]

Fu, L.

Gan, X.

Gu, M.

Iliew, R.

Jakobsen, C.

Jeong, Y.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
[CrossRef]

Kim, H.

Kim, J.

Kim, K. T.

Kim, Y.

Kirchhof, J.

Kivshar, Y. S.

Knight, J. C.

Kobelke, J.

Larsen, J. J.

Lederer, F.

Lee, B.

Lee, B. H.

Limpert, J.

Moon, D. S.

Myaing, M. T.

Nolte, S.

Norris, T. B.

Oh, K.

Paek, U.

Petersson, A.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
[CrossRef]

Russell, P. St. J.

Salgueiro, J. R.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Meth. 2, 941 (2005).
[CrossRef]

Schreiber, T.

Schuster, K.

Tearney, G. J.

Thomas, T.

Tunnermann, A.

Vienne, G.

Wadsworth, W. J.

Yang, G.

Ye, J. Y.

Yelin, D.

Yun, S. H.

Zellmer, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coupling efficiency at output ports 2 and 3 of the double-clad PCF fiber coupler as a function of the illumination wavelength at input port 1. Left inset, a scanning electron microscopy image of a double-clad PCF. Right insets, digital camera photographs of output patterns of the double-clad PCF coupler at the wavelength 800 nm .

Fig. 2
Fig. 2

Schematic diagram of the nonlinear optical microscope with a three-port double-clad PCF coupler and a GRIN lens. Mirror M 2 (shown dashed) is located on a different plane from mirror M 1 . ND, neutral-density filter; BF, bandpass filter; CO, coupling objective.

Fig. 3
Fig. 3

Two-photon fluorescence axial response to a thin layer of AF-50 dye at an excitation wavelength of 800 nm .

Fig. 4
Fig. 4

Series of (a) two-photon fluorescence images of 10 μ m diameter fluorescent micropheres and (b) SHG images of KTP crystal powder. The excitation wavelength is 800 nm , and a 400 9 nm bandpass filter is placed before the PMT when SHG images are acquired. Each set of images has an axial spacing of 5 μ m into the sample. The excitation power is approximately 10 mW on the sample. Scale bars represent 10 μ m .

Metrics