Abstract

Self-pulsing instability in the ytterbium-doped fiber (YDF) laser is investigated with the pump-bypassed cavity configuration. The residual pump light acts as a probe of the intracavity dynamics, and the temporal behavior of the light shows correlations with the self-mode locking instability in the original cavity and the sustained self-pulsing instability in the modified cavity of the YDF laser. The results suggest that the interactions among stimulated emission, pump absorption and/or reabsorption could account for self-pulsing instability in the YDF laser. The pump-bypassed laser cavity configuration can be used to investigate the instabilities of various kinds of fiber lasers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription