Abstract

We show that time-independent scattering coefficients calculated from the standard extrapolation of Mie theory to the gain regime have physical meaning up to the laser threshold. The theoretical width of a resonance decreases linearly with increasing gain and becomes zero at the laser threshold. We performed experiments on dielectric microspheres with gain, trapped with optical tweezers. The width of the mode was measured to narrow as a function of the gain up to the lasing threshold, confirming both the validity of the extrapolation of Mie theory to the gain regime below threshold and our interpretation of its point of divergence as the laser threshold.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription