Abstract

The high-voltage bias required for video-rate compatible, efficient operation of a photorefractive polymer composite is reduced from 6–8 to 1.3kV. At this low voltage, the device can hold erasable Bragg holograms with 80% efficiency in addition to having a video-rate response time. The transition of the hologram’s state from thick to thin is analyzed in detail.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, K.Lee, ed. (Springer-Verlag, 2003), Vol. 161, chap. 2.
  2. O. Ostroverkhova and W. E. Moerner, Chem. Rev. (Washington, D.C.) 104, 3267 (2004).
  3. S. J. Zilker, ChemPhysChem 1, 72 (2000).
    [CrossRef]
  4. L. P. Yu, J. Polym. Sci. Part A Polym. Chem. 39, 2557 (2001).
    [CrossRef]
  5. G. P. Wiederrecht, Annu. Rev. Mater. Res. 31, 139 (2001).
    [CrossRef]
  6. F. Wurthner, R. Wortmann, and K. Meerholz, ChemPhysChem 3, 17 (2002).
    [CrossRef] [PubMed]
  7. M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
    [CrossRef]
  8. S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
    [CrossRef]
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  10. J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
    [CrossRef]
  11. P. C. Mehta and V. V. Rampal, Lasers and Holography (World Scientific, 1993).
  12. N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  13. M. G. Moharam and L. Young, Appl. Opt. 17, 1757 (1978).
    [CrossRef] [PubMed]
  14. C. A. Walsh and W. E. Moerner, J. Opt. Soc. Am. B 9, 1642 (1992).
    [CrossRef]

2005 (1)

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

2004 (3)

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moerner, Chem. Rev. (Washington, D.C.) 104, 3267 (2004).

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

2002 (1)

F. Wurthner, R. Wortmann, and K. Meerholz, ChemPhysChem 3, 17 (2002).
[CrossRef] [PubMed]

2001 (2)

L. P. Yu, J. Polym. Sci. Part A Polym. Chem. 39, 2557 (2001).
[CrossRef]

G. P. Wiederrecht, Annu. Rev. Mater. Res. 31, 139 (2001).
[CrossRef]

2000 (1)

S. J. Zilker, ChemPhysChem 1, 72 (2000).
[CrossRef]

1992 (1)

1979 (1)

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1978 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Barlow, S.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Cammack, K.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Eralp, M.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Fuentes-Hernandez, C.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Kippelen, B.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, K.Lee, ed. (Springer-Verlag, 2003), Vol. 161, chap. 2.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kuktharev, N. V.

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Li, G.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Marder, S.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

Marder, S. R.

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Markov, V. B.

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Matsumoto, K.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Meerholz, K.

F. Wurthner, R. Wortmann, and K. Meerholz, ChemPhysChem 3, 17 (2002).
[CrossRef] [PubMed]

Mehta, P. C.

P. C. Mehta and V. V. Rampal, Lasers and Holography (World Scientific, 1993).

Meredith, G.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, Chem. Rev. (Washington, D.C.) 104, 3267 (2004).

C. A. Walsh and W. E. Moerner, J. Opt. Soc. Am. B 9, 1642 (1992).
[CrossRef]

Moharam, M. G.

Norwood, R.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

Odulov, S. G.

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, Chem. Rev. (Washington, D.C.) 104, 3267 (2004).

Peyghambarian, N.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, K.Lee, ed. (Springer-Verlag, 2003), Vol. 161, chap. 2.

Rampal, V. V.

P. C. Mehta and V. V. Rampal, Lasers and Holography (World Scientific, 1993).

Schülzgen, A.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Soskin, M. S.

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Tay, S.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Thomas, J.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Vinetskii, V. L.

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Walker, G.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Walker, G. A.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

Walsh, C. A.

Wiederrecht, G. P.

G. P. Wiederrecht, Annu. Rev. Mater. Res. 31, 139 (2001).
[CrossRef]

Wortmann, R.

F. Wurthner, R. Wortmann, and K. Meerholz, ChemPhysChem 3, 17 (2002).
[CrossRef] [PubMed]

Wurthner, F.

F. Wurthner, R. Wortmann, and K. Meerholz, ChemPhysChem 3, 17 (2002).
[CrossRef] [PubMed]

Yamamoto, M.

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Young, L.

Yu, L. P.

L. P. Yu, J. Polym. Sci. Part A Polym. Chem. 39, 2557 (2001).
[CrossRef]

Zilker, S. J.

S. J. Zilker, ChemPhysChem 1, 72 (2000).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, Adv. Mater. (Weinheim, Ger.) 16, 2032 (2004).
[CrossRef]

Annu. Rev. Mater. Res. (1)

G. P. Wiederrecht, Annu. Rev. Mater. Res. 31, 139 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, Appl. Phys. Lett. 78, 171105 (2005).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Chem. Rev. (Washington, D.C.) (1)

O. Ostroverkhova and W. E. Moerner, Chem. Rev. (Washington, D.C.) 104, 3267 (2004).

ChemPhysChem (2)

S. J. Zilker, ChemPhysChem 1, 72 (2000).
[CrossRef]

F. Wurthner, R. Wortmann, and K. Meerholz, ChemPhysChem 3, 17 (2002).
[CrossRef] [PubMed]

Ferroelectrics (1)

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Polym. Sci. Part A Polym. Chem. (1)

L. P. Yu, J. Polym. Sci. Part A Polym. Chem. 39, 2557 (2001).
[CrossRef]

Other (2)

P. C. Mehta and V. V. Rampal, Lasers and Holography (World Scientific, 1993).

B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, K.Lee, ed. (Springer-Verlag, 2003), Vol. 161, chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Steady-state diffraction efficiency for both 20 and 105 μ m thick devices as the bias voltage is increased. When the device’s thickness is reduced by five times, the operating voltage has dropped by a factor of 2.3. The peak internal diffraction efficiency of the 20 μ m device was 80%. External efficiency was = 58 % , which is higher than that of a similar thick device because of the low absorptance of the thin device. The index modulation was 0.012 at 1.3 kV .

Fig. 2
Fig. 2

(a) Typical growth of diffraction efficiency when one of the writing beams is switched on. The line is a biexponential fit. The total writing beam irradiance was 1 W cm 2 , and a bias voltage of 1.4 kV was applied through the device. (b) Net diffraction efficiency recorded as one writing beam is modulated at 1 30 Hz (full cycle write and erase) frequency. Inset, response of the photorefractive device at a 30 Hz frame rate.

Fig. 3
Fig. 3

Drop in peak efficiency as the state of the hologram is changed from thick (Bragg) to thin (Raman–Nath). The grating spacing is increased to vary Kogelnik’s Q value. The shift in peak efficiency reveals growth in index modulation with increased grating spacing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q = 2 π λ d n Λ 2 ,
η sin 2 [ π Δ n ( E ) d λ ( cos α 1 cos α 2 ) 1 2 ] ,
Δ n E E sc ( E ) P = ( V d ) P ,
Δ n A [ 1 m exp ( t t 1 ) ( 1 m ) exp ( t t 2 ) ] .

Metrics