Abstract

The spatial phase resulting from the digital reconstruction of an in-line hologram of a particle field is shown to yield a unique pattern that can be used for particle detection. This phase signature is present only when viewed along with the reference light. The existence of the phase pattern is verified computationally and confirmed in laboratory experiments with holograms of calibrated glass spheres. The phase signature provides an alternative to the widely used intensity method for particle detection.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Hinsch, Meas. Sci. Technol. 13, R61 (2002).
    [CrossRef]
  2. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
    [CrossRef]
  3. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
    [CrossRef]
  4. S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
    [CrossRef]
  5. G. Pan and H. Meng, Appl. Opt. 42, 827 (2003).
    [CrossRef] [PubMed]
  6. C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
    [CrossRef]
  7. W. Yang, A. B. Kostinski, and R. A. Shaw, Opt. Lett. 30, 1303 (2005).
    [CrossRef] [PubMed]
  8. C. S. Vikram, Particle Field Holography (Cambridge U. Press, 1992).
    [CrossRef]
  9. G. B. Parrent, Jr. and B. J. Thompson, Opt. Acta 11, 183 (1964).
    [CrossRef]
  10. D. J. Stigliani, Jr., R. Mittra, and R. G. Semonin, J. Opt. Soc. Am. 60, 1059 (1970).
    [CrossRef]
  11. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).
  12. T. Kreis, Opt. Eng. 41, 1829 (2002).
    [CrossRef]

2005 (1)

2004 (3)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
[CrossRef]

C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
[CrossRef]

2003 (1)

2002 (2)

K. D. Hinsch, Meas. Sci. Technol. 13, R61 (2002).
[CrossRef]

T. Kreis, Opt. Eng. 41, 1829 (2002).
[CrossRef]

2000 (1)

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

1970 (1)

1964 (1)

G. B. Parrent, Jr. and B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Ducottet, C.

C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
[CrossRef]

Fournel, T.

C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
[CrossRef]

Fournier, C.

C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
[CrossRef]

Fugal, J. P.

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).

Hinsch, K. D.

K. D. Hinsch, Meas. Sci. Technol. 13, R61 (2002).
[CrossRef]

Kostinski, A. B.

Kreis, T.

T. Kreis, Opt. Eng. 41, 1829 (2002).
[CrossRef]

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
[CrossRef]

G. Pan and H. Meng, Appl. Opt. 42, 827 (2003).
[CrossRef] [PubMed]

Mittra, R.

Murata, S.

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
[CrossRef]

G. Pan and H. Meng, Appl. Opt. 42, 827 (2003).
[CrossRef] [PubMed]

Parrent, G. B.

G. B. Parrent, Jr. and B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
[CrossRef]

Saw, E. W.

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
[CrossRef]

Semonin, R. G.

Sergeyev, A. V.

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
[CrossRef]

Shaw, R. A.

W. Yang, A. B. Kostinski, and R. A. Shaw, Opt. Lett. 30, 1303 (2005).
[CrossRef] [PubMed]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
[CrossRef]

Stigliani, D. J.

Thompson, B. J.

G. B. Parrent, Jr. and B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Vikram, C. S.

C. S. Vikram, Particle Field Holography (Cambridge U. Press, 1992).
[CrossRef]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
[CrossRef]

Yang, W.

Yasuda, N.

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

Appl. Opt. (2)

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 16, 5987 (2004).
[CrossRef]

G. Pan and H. Meng, Appl. Opt. 42, 827 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (3)

K. D. Hinsch, Meas. Sci. Technol. 13, R61 (2002).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
[CrossRef]

C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
[CrossRef]

Opt. Acta (1)

G. B. Parrent, Jr. and B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Opt. Eng. (1)

T. Kreis, Opt. Eng. 41, 1829 (2002).
[CrossRef]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).

C. S. Vikram, Particle Field Holography (Cambridge U. Press, 1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Phase signature reconstructed from a simulated hologram. (a) Spatial phase variation (within an axial plane through the center of the opaque disk) of the reconstructed field based on a simulated hologram. (b) Comparison of the axial phase reconstruction (solid line) with the 1 z decay predicted by Eq. (2) (dashed curve). It can be seen that the finite size effects of the pixels and CCD chip prevent the phase from following the 1 z dependence near the opaque disk, and the basic phase signature remains conspicuous and robust.

Fig. 2
Fig. 2

Phase signature reconstructed from experimental in-line holographic data. (a) Reconstructed spatial phase variation within an axial cross-section through the center of the glass sphere. (b) Reconstructed phase signature along the central axis through the particle. A close agreement of the spatial phase features with those of the simulation shown in Fig. 1 is observed. The reconstruction is based on the same array size and interrogation plane spacing as those for the simulation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E z ( x , y ) 1 + a 0 ( x , y ) h z ( x , y ) .
E z ( 0 ) 1 1 j λ z 0 r 0 0 2 π exp ( j k 2 z r 2 ) r d θ d r e j ( l z ) e j ϕ ( z ) ,
ϕ 1 = π ( r 0 Δ ) .
ϕ 2 = π ( r 0 D λ z 0 ) .

Metrics