Abstract

Fiber optic sensors based on the interaction of surface plasmons or evanescent waves with the surrounding environment are usually obtained by tapering an optical fiber, which significantly weakens the structure, or by use of just the end of the optical fiber. A fiber optic structure that maintains the structural integrity of the optical fiber with a long environmental interaction length is presented. Graded-index optical fiber elements are used as lenses, and a coreless optical fiber acts as the environmental interaction area. These elements are fused by an optical fiber splicer and result in a continuous fiber optic sensing system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Haddock, P. M. Shankar, and R. Mutharasan, Sens. Actuators B 88, 67 (2003).
    [CrossRef]
  2. R. C. Jorgenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
    [CrossRef]
  3. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
    [CrossRef]
  4. F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
    [CrossRef]
  5. K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
    [CrossRef]
  6. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  7. L. W. Casperson, Appl. Phys. Lett. 41, 6410 (2002).
  8. L. W. Casperson, J. Opt. Soc. Am. A 17, 1115 (2000).
    [CrossRef]

2003 (1)

H. S. Haddock, P. M. Shankar, and R. Mutharasan, Sens. Actuators B 88, 67 (2003).
[CrossRef]

2002 (2)

F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
[CrossRef]

L. W. Casperson, Appl. Phys. Lett. 41, 6410 (2002).

2001 (1)

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
[CrossRef]

2000 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1997 (1)

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

1993 (1)

R. C. Jorgenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

Brynda, E.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
[CrossRef]

Casperson, L. W.

L. W. Casperson, Appl. Phys. Lett. 41, 6410 (2002).

L. W. Casperson, J. Opt. Soc. Am. A 17, 1115 (2000).
[CrossRef]

Ctyroky, J.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Haddock, H. S.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, Sens. Actuators B 88, 67 (2003).
[CrossRef]

Hiraguri, N.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Homola, J.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

Kazami, H.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Matsumura, K.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Morichi, H.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Mutharasan, R.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, Sens. Actuators B 88, 67 (2003).
[CrossRef]

Ohishi, I.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Ohnuki, H.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Rahman, F. A.

F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
[CrossRef]

Shankar, P. M.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, Sens. Actuators B 88, 67 (2003).
[CrossRef]

Shiraishi, K.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Slavik, R.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
[CrossRef]

Takahashi, K.

F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
[CrossRef]

Teik, C. H.

F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

R. C. Jorgenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

L. W. Casperson, Appl. Phys. Lett. 41, 6410 (2002).

J. Lightwave Technol. (1)

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

F. A. Rahman, K. Takahashi, and C. H. Teik, Opt. Commun. 208, 103 (2002).
[CrossRef]

Sens. Actuators B (4)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

H. S. Haddock, P. M. Shankar, and R. Mutharasan, Sens. Actuators B 88, 67 (2003).
[CrossRef]

R. C. Jorgenson and S. S. Yee, Sens. Actuators B 12, 213 (1993).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, Sens. Actuators B 74, 106 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Top, schematic of a continuous optical fiber structure that uses graded-index optical fibers as lenses to expand and collect a Gaussian beam and a coreless fiber as an environmental interaction volume, and bottom, a corresponding ray-tracing schematic. (b) Top, structure that uses multiple graded-index and coreless fiber elements, and bottom, a corresponding ray-tracing schematic. The angles of incidence are exaggerated in the figure and remain greater than the critical angle of the glass–air interface.

Fig. 2
Fig. 2

Normalized intensity profiles of p-polarized Gaussian beams for several values of Z: M0 at Z = 0 , M1 at Z = z 0 , M2 at Z = 2 z 0 , M3 at Z = 3 z 0 , M4 at Z = 4 z 0 , M5 at Z = 5 z 0 , M6 at Z = 6 z 0 , M7 at Z = 7 z 0 , and M8 at Z = 8 z 0 , where z 0 is the Rayleigh length.

Fig. 3
Fig. 3

Spectral response of in-line fiber structures with gold nanoparticles on their surfaces, showing the shift in a plasmon-resonance-related dip when the structure was placed in water, for (a) structure A and (b) structure B. Curves labeled P are in air, and curves labeled Q are in water.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i q ( z ) = 1 R ( z ) j λ π w ( z ) 2 n , q 2 ( z ) = A q 1 ( z ) + B C q 1 ( z ) + D ,
M interf = [ 1 0 0 n 2 n 1 ] , M GIFL = [ cos ( L g ) sin ( L g ) g a g sin ( L g ) cos ( L g ) ] ,
M transl = [ 1 x n 0 1 ] ,
E ( R , Z ) = [ 2 W 0 π ( 1 + Z 2 ) ] 1 2 exp [ ( R 2 i Z R 2 ) W 0 2 ( 1 + Z 2 ) ] exp [ i tan 1 ( Z ) 2 ] ,
E p , s = E ( R , Z ) + n = 1 n = M ( ( 1 ) n exp ( j n θ p , s ) E { [ n + ( 1 ) n R ] , Z } ) + n = 1 n = M ( ( 1 ) n exp ( j n θ p , s ) E { [ n + ( 1 ) n R ] , Z } ) ,

Metrics