Abstract

Polarization modulation instability (PMI) in birefringent photonic crystal fibers has been observed in the normal dispersion regime with a frequency shift of 64THz between the generated frequencies and the pump frequency. The generated sidebands are orthogonally polarized to the pump. From the observed PMI frequency shift and the measured dispersion, we determined the phase birefringence to be 5.3×105 at a pump wavelength of 647.1nm. This birefringence was used to estimate the PMI gain as a function of pump wavelength. Four-wave mixing experiments in both the normal and the anomalous dispersion regimes generated PMI frequency shifts that show good agreement with the predicted values over a 70THz range. These results could lead to amplifiers and oscillators based on PMI.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, Opt. Lett. 28, 2225 (2003).
    [CrossRef] [PubMed]
  3. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 30, 762 (2005).
    [CrossRef] [PubMed]
  4. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
    [CrossRef]
  5. J. Rothenberg, Phys. Rev. A 42, 682 (1990).
    [CrossRef] [PubMed]
  6. R. H. Stolen, M. A. Bösch, and C. Lin, Opt. Lett. 6, 213 (1981).
    [CrossRef] [PubMed]
  7. S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
    [CrossRef] [PubMed]
  8. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
    [CrossRef] [PubMed]
  9. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, Opt. Lett. 27, 695 (2002).
    [CrossRef]
  10. B. Kibler, C. Billet, J. M. Dudley, R. S. Windeler, and G. Millot, Opt. Lett. 29, 1903 (2004).
    [CrossRef] [PubMed]
  11. S. G. Murdoch, R. Leonhardt, J. D. Harvey, and T. A. B. Kennedy, J. Opt. Soc. Am. B 14, 1816 (1997).
    [CrossRef]
  12. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
    [CrossRef]
  13. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
    [CrossRef]
  14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).
    [CrossRef]
  15. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
    [CrossRef]
  16. G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, Opt. Express 13, 8662 (2005).
    [CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (1)

2002 (1)

2000 (2)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1990 (2)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

J. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef] [PubMed]

1988 (1)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[CrossRef] [PubMed]

1981 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Billet, C.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
[CrossRef]

Bösch, M. A.

Chen, A. Y. H.

Coen, S.

Drummond, P. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Dudley, J. M.

Ha, S. W.

Harvey, J. D.

Joly, N. Y.

Kennedy, T. A. B.

S. G. Murdoch, R. Leonhardt, J. D. Harvey, and T. A. B. Kennedy, J. Opt. Soc. Am. B 14, 1816 (1997).
[CrossRef]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Kibler, B.

Knight, J. C.

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 30, 762 (2005).
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, Opt. Lett. 28, 2225 (2003).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

Kruhlak, R. J.

Leonhardt, R.

Lin, C.

Millot, G.

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
[CrossRef]

Murdoch, S. G.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Provino, L.

Ranka, J. K.

Rothenberg, J.

J. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef] [PubMed]

Russel, P. St. J.

Russell, P. St. J.

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 30, 762 (2005).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
[CrossRef]

Sauter, A.

Stentz, A. J.

Stolen, R. H.

Wabnitz, S.

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[CrossRef] [PubMed]

Wadsworth, W. J.

Windeler, R. S.

Wong, G. K. L.

IEEE Photon. Technol. Lett. (2)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Phys. Rev. A (2)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[CrossRef] [PubMed]

J. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Linear phase mismatch for various pump wavelengths as a function of frequency detuning for the fast axis of the fiber.

Fig. 2
Fig. 2

Experimental output spectra emerging from (a) the slow axis and (b) the fast axis of 2 m of a PCF when the pump was linearly polarized along the slow axis. The peak power at the start of the PCF was 60 W . The intensity units have an arbitrary reference but accurately represent the relative intensity on each axis.

Fig. 3
Fig. 3

Theoretical PMI phase-matching curves for the fast-axis pump (dashed curve) and the slow-axis pump (solid curve) based on a constant B = 5.3 × 10 5 . Inset, fast-axis gain band (FWHM, 6.4 THz ) for a 60 W peak power, slow-axis pump at λ 659 nm .

Fig. 4
Fig. 4

Measured frequency detuning to the maximum gain for a slow-axis (circles) [fast-axis (squares)] pump compared with the theoretical frequency shift for a slow-axis (solid curve) [fast-axis (dashed curve)] pump with a constant phase birefringence of 5.3 × 10 5 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( Ω , ω p ) = 2 Im [ Δ ( Δ 2 3 γ P ) ] 1 2 ,
Δ β L ( Ω , ω p ) = β ( ω p + Ω ) + β ( ω p Ω ) 2 β ( ω p ) ,
Δ β L ( Ω , ω p ) 2 δ β p ( 2 3 ) γ P = 0 .

Metrics