Abstract

It is shown that a layer of left-handed media can act as a bandpass filter with a roll factor that far exceeds those of state-of-the-art spectral filters. The conditions for enhanced stop band rejection are presented and are deemed feasible, as the models used correspond to physically realizable materials. Roll factors of the order of 104106dBGHz are found, together with acceptable insertion losses of the order of 10 dB.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
    [CrossRef]
  2. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  3. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
    [CrossRef]
  4. A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  5. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  7. N. Garcia, M. Muñoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, arXiv:cond-mat/0206476 (June 2002).
  8. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
    [CrossRef]
  9. A. L. Efros, Phys. Rev. E 70, 048602 (2004).
    [CrossRef]
  10. T. Koschny, Phys. Rev. E 70, 048603 (2004).
    [CrossRef]
  11. Y. B. Cho, K. S. Jun, and I. S. Kim, Microwave J. 47, 90 (2004).
  12. R. Kumar, N. Gupta, and K. P. M. Bhat, Microwave J. 47, 120 (2004).
  13. W. Y. Leung, K. K. M. Cheng, and K. L. Wu, IEEE Microw. Wirel. Compon. Lett. 12, 240 (2002).
    [CrossRef]
  14. H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).
  15. R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
    [CrossRef]

2004 (4)

A. L. Efros, Phys. Rev. E 70, 048602 (2004).
[CrossRef]

T. Koschny, Phys. Rev. E 70, 048603 (2004).
[CrossRef]

Y. B. Cho, K. S. Jun, and I. S. Kim, Microwave J. 47, 90 (2004).

R. Kumar, N. Gupta, and K. P. M. Bhat, Microwave J. 47, 120 (2004).

2003 (5)

A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
[CrossRef]

2002 (1)

W. Y. Leung, K. K. M. Cheng, and K. L. Wu, IEEE Microw. Wirel. Compon. Lett. 12, 240 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

1999 (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

1968 (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Bhat, K. P.

R. Kumar, N. Gupta, and K. P. M. Bhat, Microwave J. 47, 120 (2004).

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cheng, K. K.

W. Y. Leung, K. K. M. Cheng, and K. L. Wu, IEEE Microw. Wirel. Compon. Lett. 12, 240 (2002).
[CrossRef]

Cho, Y. B.

Y. B. Cho, K. S. Jun, and I. S. Kim, Microwave J. 47, 90 (2004).

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Doll, T.

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

Efros, A. L.

A. L. Efros, Phys. Rev. E 70, 048602 (2004).
[CrossRef]

Everitt, H.

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

Fujiyama, J.

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

Garcia, N.

N. Garcia, M. Muñoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, arXiv:cond-mat/0206476 (June 2002).

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
[CrossRef]

Gupta, N.

R. Kumar, N. Gupta, and K. P. M. Bhat, Microwave J. 47, 120 (2004).

Higgins, A.

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Jun, K. S.

Y. B. Cho, K. S. Jun, and I. S. Kim, Microwave J. 47, 90 (2004).

Kanaya, H.

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

Kim, I. S.

Y. B. Cho, K. S. Jun, and I. S. Kim, Microwave J. 47, 90 (2004).

Koga, Y.

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

Koltenbah, B. E.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Koschny, T.

T. Koschny, Phys. Rev. E 70, 048603 (2004).
[CrossRef]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

Kumar, R.

R. Kumar, N. Gupta, and K. P. M. Bhat, Microwave J. 47, 120 (2004).

Leung, W. Y.

W. Y. Leung, K. K. M. Cheng, and K. L. Wu, IEEE Microw. Wirel. Compon. Lett. 12, 240 (2002).
[CrossRef]

Li, K.

R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Markos, P.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

Muñoz, M.

N. Garcia, M. Muñoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, arXiv:cond-mat/0206476 (June 2002).

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

Nieto-Vesperinas, M.

N. Garcia, M. Muñoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, arXiv:cond-mat/0206476 (June 2002).

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Ponizovskaya, E. V.

N. Garcia, M. Muñoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, arXiv:cond-mat/0206476 (June 2002).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Scherer, A.

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

Smith, D. R.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

Soukoulis, C. M.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Tanielian, M. H.

R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
[CrossRef]

Urakawa, G.

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

Veselago, V. G.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Wu, K. L.

W. Y. Leung, K. K. M. Cheng, and K. L. Wu, IEEE Microw. Wirel. Compon. Lett. 12, 240 (2002).
[CrossRef]

Yablonovich, E.

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

Yoshida, K.

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

Appl. Phys. Lett. (2)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, Appl. Phys. Lett. 84, 2356 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

W. Y. Leung, K. K. M. Cheng, and K. L. Wu, IEEE Microw. Wirel. Compon. Lett. 12, 240 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

A. Scherer, T. Doll, E. Yablonovich, H. Everitt, and A. Higgins, eds., special issue on Mini-electromagnetic crystal structures, design, synthesis, and applications, IEEE Trans. Microwave Theory Tech. 47 (11) (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

IEICE Trans. Electron. (1)

H. Kanaya, Y. Koga, J. Fujiyama, G. Urakawa, and K. Yoshida, IEICE Trans. Electron. E86-C, 37 (2003).

Microwave J. (2)

Y. B. Cho, K. S. Jun, and I. S. Kim, Microwave J. 47, 90 (2004).

R. Kumar, N. Gupta, and K. P. M. Bhat, Microwave J. 47, 120 (2004).

Phys. Rev. E (3)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

A. L. Efros, Phys. Rev. E 70, 048602 (2004).
[CrossRef]

T. Koschny, Phys. Rev. E 70, 048603 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (1)

N. Garcia, M. Muñoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, arXiv:cond-mat/0206476 (June 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Left, illustrative test case involving Lorentzian permeability and Drude permittivity. Constitutive parameters are K = 0.4 , f 0 = 2.5 GHz , α = 1 50 , f p = 5.5 GHz , and γ = 1.3 GHz . The shaded area depicts the LHM region, which is surrounded by evanescent field regions. Comparison of top right, the transmission band for d = 15 cm with bottom right, the real parts of the permeability and of the index of refraction. RHM, right-handed media.

Fig. 2
Fig. 2

Exact transmission coefficient for a LHM optical filter with extremely sharp slopes. The material is characterized by K = 0.2 , f 0 = 1.8 GHz , α = 0.001 , f p = 14.0 GHz , γ = 0.01 GHz , and d = 15 cm .

Fig. 3
Fig. 3

Detail of the roll slopes of the LHM optical filter from transmission calculations. K = 0.2 , f 0 = 1.8 GHz , α = 0.001 , f p = 14.0 GHz , γ = 0.01 GHz , and d = 15 cm . Left, the front roll slope data [the solid curve is exact; crosses are approximate from relation (6)] give a numerical slope of 2 × 10 6 dB GHz when the calculations are made at f 1.8005 GHz (point of maximum slope). Right, the back slope shows a numerical slope of 10 4 dB GHz for calculation at f 1.973 GHz (point of maximum slope).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T = 4 μ q i q exp ( i d q i ) ( q i μ + q ) 2 exp ( i d q ) ( q i μ q ) 2 exp ( i d q ) ,
μ = 1 + K 1 ( f f 0 ) 2 i α f f 0 , ϵ = 1 f p 2 f ( f + i γ ) ,
f 1 , 2 f 0 = { 1 + ( K α 2 2 ) ± [ ( K α 2 2 ) 2 α 2 ] 1 2 } 1 2 .
T 4 μ q i q exp [ i d ( q i q ) ] ( q i μ + q ) 2 .
T ( f ) T ( f s ) exp { i d π 15 ( f f s ) d d f [ f n ( f ) ] f s } .
n ( f ) n ( f 2 ) [ 1 + K ( f f 0 ) 2 i α f f 0 ] 1 2 [ 1 + K ( f 2 f 0 ) 2 i α f 2 f 0 ] 1 2 .
T ( f ) T ( f 2 ) exp ( d π 30 ( f f 2 ) Im { [ n ( f 2 ) ] } ) ,
Δ T dB Δ f FRONT BACK 4 π d 3 α f 0 f 0 , 1 log 10 ( e ) Re { [ n ( f 2 , 1 ) ] } .

Metrics