Abstract

We propose a design for patterned metal-coated surfaces allowing efficient broadband coupling of radiation to a fully localized surface cavity mode, resulting in a zero-focal-length concentrator. This finite structure exploits the interplay of a defect mode cavity with a coupling grating and is investigated through the modal expansion method and finite-difference time domain calculations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
    [CrossRef] [PubMed]
  2. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
    [CrossRef]
  3. Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
    [CrossRef]
  4. B. Wang and G. P. Wang, Opt. Lett. 29, 1992 (2004).
    [CrossRef] [PubMed]
  5. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
    [CrossRef] [PubMed]
  6. W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
    [CrossRef]
  7. A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).
  8. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996).
    [CrossRef]
  9. M. Ordal, R. Bell, R. Alexander, L. Long, and M. Querry, Appl. Opt. 26, 744 (1987).
    [CrossRef] [PubMed]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
    [CrossRef] [PubMed]

2004 (3)

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, Opt. Lett. 29, 1992 (2004).
[CrossRef] [PubMed]

2003 (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

1996 (3)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
[CrossRef]

L. Li, J. Opt. Soc. Am. A 13, 1024 (1996).
[CrossRef]

1987 (1)

Alexander, R.

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

Bell, R.

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).

Kim, H. K.

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Li, L.

Long, L.

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Ordal, M.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Presist, T. W.

W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
[CrossRef]

Querry, M.

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
[CrossRef]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Sun, Z.

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Wang, B.

Wang, G. P.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Phys. Rev. B (1)

W. L. Barnes, T. W. Presist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996), and references therein.
[CrossRef]

Phys. Rev. Lett. (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

Science (2)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Structure and reference frame. (b) Surface wave intensity E y (2D contour plot) at the frequency ω m ; the dashed curve is the position where plot (c) is calculated. (c) E y 2 at y = 0.5 Λ at the same frequency, calculated by FDTD.

Fig. 2
Fig. 2

Average relative field intensity ζ x ( ω ) near the defect ( X = 4 Λ , solid curve) and along the whole structure ( X = L , dashed curve).

Fig. 3
Fig. 3

Dispersion curves calculated for a metal grating with period Λ, a depth equal to 0.14 Λ , and a filling factor of 50% for three values of metal permeability ϵ r : 10 3 (dashed curve), 10 5 (solid curve), and 4650 1670 i (gold at 10 μ m , dotted curve). The thin solid line is the light line. The negative abscissa represents the solutions for real k x values that define the valence band, and the positive abscissa represents the solutions for complex k x values that define the bandgap. The two insets represent the intensity dependence along x for Bloch modes calculated at the valence band edge and in the gap.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ζ X ( ω ) = 1 X h 1 E inc 2 h 0 X 2 X 2 E y 2 d x d y .

Metrics