Abstract

We present a novel design approach for realizing holey fibers (HFs) with flat dispersion characteristics and large mode area based on the existence of an artificially defected air-hole ring in the cladding, and on the inclusion of additional defected air holes in the core of the fiber. This unique type of HF can be used for achieving remarkable flat dispersion characteristics as well as a large mode area, which are particularly useful for high-speed data transmission. The validation of the proposed design is done by adopting an efficient full-vectorial finite element method for optical characterization of HFs. The proposed fiber can be employed in reconfigurable optical transmission systems for performing wavelength division multiplexing operation. Typical characteristics of the proposed HF are a flattened dispersion of 6.3±0.5pskmnm from 1.45to1.65μm and an effective mode area as large as 100μm2 in the same frequency range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birkc, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  3. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
    [CrossRef]
  4. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, J. Lightwave Technol. 22, 7 (2004).
    [CrossRef]
  5. M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, Opt. Express 12, 1372 (2004).
    [CrossRef] [PubMed]
  6. K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, J. Lightwave Technol. 23, 7 (2005).
    [CrossRef]
  7. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés, Opt. Express 9, 687 (2001).
    [CrossRef] [PubMed]
  8. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 21, 843 (2003).
    [CrossRef]
  9. P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
    [CrossRef]
  10. K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
    [CrossRef]

2005

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
[CrossRef]

K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, J. Lightwave Technol. 23, 7 (2005).
[CrossRef]

2004

2003

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 21, 843 (2003).
[CrossRef]

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

2002

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

2001

1996

Andrés, M. V.

Andrés, P.

Atkin, D. M.

Bertaina, A.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

Birkc, T. A.

de Montmorillon, L.-A.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

Ferrando, A.

Fikai, C.

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
[CrossRef]

Folkenberg, J. R.

Fukai, C.

Guenot, P.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

Hasegawa, T.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 21, 843 (2003).
[CrossRef]

Jacobsen, C.

Knight, J. C.

Koshiba, M.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 21, 843 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

Kurokawa, K.

K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, J. Lightwave Technol. 23, 7 (2005).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
[CrossRef]

Matsui, T.

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
[CrossRef]

Miret, J. J.

Mortensen, N. A.

Nakajima, K.

Nielsen, M. D.

Nouchi, P.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 21, 843 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

Sankawa, I.

K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, J. Lightwave Technol. 23, 7 (2005).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
[CrossRef]

Sasaoka, E.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 21, 843 (2003).
[CrossRef]

Sato, K.

Sillard, P.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

Silvestre, E.

Simonsen, H. R.

Tajima, K.

Zhou, J.

C. R. Phys.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, C. R. Phys. 4, 29 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Technol.

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fikai, T. Matsui, and I. Sankawa, Opt. Fiber Technol. 11, 101 (2005).
[CrossRef]

Opt. Lett.

Science

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic cross section of the proposed HF with three additional air holes positioned in the core and a defective air-hole ring in the cladding. By a judicious choice of the design parameters, this HF structure can exhibit ultraflattened chromatic dispersion and a large mode area, making the proposed HF ideal as an information transmitting platform.

Fig. 2
Fig. 2

Normalized waveguide dispersion D w Λ (solid curves) as a function of the normalized wavelength λ Λ , for different incremental values of the design parameter d 1 Λ , and for fixed air-hole diameters in the cladding d Λ = d 2 Λ = 0.4 . Material dispersion D m Λ (dashed curve) is also plotted for a lattice constant Λ = 2.8 μ m .

Fig. 3
Fig. 3

(a) Total chromatic dispersion as a function of the wavelength λ for different values of the design parameter d 2 Λ , for fixed air-hole diameters in the cladding d Λ = 0.4 , and for fixed defected air holes in the core d 1 Λ = 0.29 . (b) Effective mode area. It is evident that by decreasing the size of the air holes in the defected ring the effective mode area increases, while the chromatic dispersion decreases.

Fig. 4
Fig. 4

Leakage loss of the fundamental mode in the HF with 11 air-hole rings as a function of wavelength for the optimized design parameters Λ = 2.8 μ m , d Λ = 0.4 , d 1 Λ = 0.29 , and d 2 Λ = 0.31 . The inset shows the electric field distribution for the x-polarized mode at a wavelength of λ = 1.55 μ m .

Metrics