Abstract

We present the results of an experiment for frequency and polarization dependence characterization of nonlinear cross-phase-modulation (XPM) effects in optical fibers. The measurement technique is based on the direct analysis of high-resolution optical spectra of a signal wave that is phase modulated by an intensity-modulated pump wave. Measurement results provide experimental confirmation of the scalar character, over the whole resonant frequency range, of the electrostrictive contribution to the nonlinear refractive index. Also, the results confirm experimentally the relation describing the polarization dependence of the Kerr contribution to XPM in non-polarization-maintaining fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chraplyvy, J. Lightwave Technol. 8, 1548 (1990).
    [CrossRef]
  2. N. Kikuchi, K. Sekine, and S. Sasaki, Electron. Lett. 33, 653 (1997).
    [CrossRef]
  3. A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, 1 (1999).
    [CrossRef]
  4. E. L. Buckland and R. W. Boyd, Opt. Lett. 21, 1117 (1996).
    [CrossRef] [PubMed]
  5. J. Subías, J. Pelayo, R. Alonso, F. Villuendas, and C. Heras, J. Opt. Soc. Am. B 19, 390 (2002).
    [CrossRef]
  6. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, Opt. Lett. 20, 988 (1995).
    [CrossRef] [PubMed]
  7. J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
    [CrossRef]
  8. D. Monzón-Hernández, A. Starodumov, Y. Barmenkov, I. Torres, and F. Mendoza, Opt. Lett. 23, 1274 (1998).
    [CrossRef]
  9. Q. Lin and G. P. Agrawal, J. Lightwave Technol. 22, 977 (2004).
    [CrossRef]

2005 (1)

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

2004 (1)

2002 (1)

1999 (1)

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, 1 (1999).
[CrossRef]

1998 (1)

1997 (1)

N. Kikuchi, K. Sekine, and S. Sasaki, Electron. Lett. 33, 653 (1997).
[CrossRef]

1996 (1)

1995 (1)

1990 (1)

A. Chraplyvy, J. Lightwave Technol. 8, 1548 (1990).
[CrossRef]

Agrawal, G. P.

Alonso, R.

Barmenkov, Y.

Boyd, R. W.

Buckland, E. L.

Chraplyvy, A.

A. Chraplyvy, J. Lightwave Technol. 8, 1548 (1990).
[CrossRef]

Fellegara, A.

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, 1 (1999).
[CrossRef]

Heras, C.

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Subías, J. Pelayo, R. Alonso, F. Villuendas, and C. Heras, J. Opt. Soc. Am. B 19, 390 (2002).
[CrossRef]

Kato, T.

Kikuchi, N.

N. Kikuchi, K. Sekine, and S. Sasaki, Electron. Lett. 33, 653 (1997).
[CrossRef]

Lin, Q.

Martinelli, M.

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, 1 (1999).
[CrossRef]

Melloni, A.

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, 1 (1999).
[CrossRef]

Mendoza, F.

Monzón-Hernández, D.

Nishimura, M.

Pelayo, J.

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Subías, J. Pelayo, R. Alonso, F. Villuendas, and C. Heras, J. Opt. Soc. Am. B 19, 390 (2002).
[CrossRef]

Pellejer, E.

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Sasaki, S.

N. Kikuchi, K. Sekine, and S. Sasaki, Electron. Lett. 33, 653 (1997).
[CrossRef]

Sasaoka, E.

Sekine, K.

N. Kikuchi, K. Sekine, and S. Sasaki, Electron. Lett. 33, 653 (1997).
[CrossRef]

Starodumov, A.

Subias, J.

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Subías, J.

Suetsugu, Y.

Takagi, M.

Torres, I.

Villuendas, F.

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Subías, J. Pelayo, R. Alonso, F. Villuendas, and C. Heras, J. Opt. Soc. Am. B 19, 390 (2002).
[CrossRef]

Electron. Lett. (1)

N. Kikuchi, K. Sekine, and S. Sasaki, Electron. Lett. 33, 653 (1997).
[CrossRef]

Fiber Integr. Opt. (1)

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, 1 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Subias, J. Pelayo, F. Villuendas, C. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Example of measured optical spectra.

Fig. 3
Fig. 3

Signal optical spectra for four different modulation frequencies (superimposed on the same graph): (a) 463 MHz , (b) 611 MHz , (c) 1 GHz , (d) 1.5 GHz .

Fig. 4
Fig. 4

Measured nonlinear induced phase shift for (a) parallel and (b) orthogonal relative SOP conditions.

Fig. 5
Fig. 5

Electrostriction contribution in case of orthogonal relative SOP, n 2 e ( ν m ) .

Fig. 6
Fig. 6

Difference between n 2 e ( ν m ) for parallel and orthogonal SOPs.

Fig. 7
Fig. 7

Theoretical curve and measured values for XPM polarization parameter b as a function of θ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P p ( L , ν ) = P p ( L ) { δ ( ν ν p ) + a 2 [ δ ( ν ν p + ν m ) + δ ( ν ν p ν m ) ] + } .
ϕ = 2 π L eff λ s A eff 2 a P p ( 0 ) n 2 eff ,
n 2 eff ( θ , ν m ) = 2 b ( θ ) n 2 k + n 2 e ( ν m ) ,
S 0 ( L , ν ) = S 0 ( L ) ( J 0 2 ( ϕ ) δ ( ν ν s ) J 1 2 ( ϕ ) { δ ( ν [ ν s ν m ] ) + δ ( ν [ ν s + ν m ] ) } + ) ,

Metrics