Abstract

We demonstrate, for the first time to our knowledge, an optical parametric amplifier directly pumped by a femtosecond oscillator. Wavelength-tunable pulses in the ranges 0.650.85μm (signal) and 1.42.5μm (idler) are generated at a repetition frequency of 1 MHz. For pumping the β-barium borate crystal we use a microjoule Yb:KY(WO4)2 femtosecond oscillator with cavity dumping. Pulses with 30 nJ of energy and a duration of 16 fs are achieved from a supercontinuum seed generated in a sapphire plate.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2002).
    [CrossRef]
  2. M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus, Opt. Lett. 19, 1855 (1994).
    [CrossRef] [PubMed]
  3. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, Opt. Lett. 30, 1891 (2005).
    [CrossRef] [PubMed]
  4. S. M. Kelly, Electron. Lett. 28, 806 (1992).
    [CrossRef]
  5. A. Killi and U. Morgner, Opt. Express 12, 3297 (2004).
    [CrossRef]
  6. A. Killi, J. Dörring, U. Morgner, M. J. Lederer, J. Frei, and D. Kopf, Opt. Express 13, 1916 (2005).
    [CrossRef] [PubMed]
  7. J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.
  8. G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  9. G. Cerullo, M. Nisoli, and S. D. Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
    [CrossRef]

2005 (2)

2004 (1)

2002 (1)

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2002).
[CrossRef]

1997 (1)

G. Cerullo, M. Nisoli, and S. D. Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

1994 (1)

1992 (1)

S. M. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Bartelt, H.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Cerullo, G.

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2002).
[CrossRef]

G. Cerullo, M. Nisoli, and S. D. Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Dörring, J.

Etrich, C.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Fallnich, C.

Frei, J.

Iliew, R.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Kelly, S. M.

S. M. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

Killi, A.

Kirchhof, J.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Kobelke, J.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Kopf, D.

Lederer, F.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Lederer, M. J.

Morgner, U.

Negus, D. K.

Nisoli, M.

G. Cerullo, M. Nisoli, and S. D. Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Reed, M. K.

Schuster, K.

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

Silvestri, S. D.

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2002).
[CrossRef]

G. Cerullo, M. Nisoli, and S. D. Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Steiner-Shepard, M. K.

Steinmann, A.

Appl. Phys. Lett. (1)

G. Cerullo, M. Nisoli, and S. D. Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef]

Electron. Lett. (1)

S. M. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2002).
[CrossRef]

Other (2)

J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, F. Lederer, Photonic crystal fibers, in Photonic Crystals, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2003), pp. 266-288.

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for the OPA experiment: PX, plano–convex lens; AC’s, achromatic lenses; LMA, microstructured large-mode-area fiber; PS, periscope; other abbreviations defined in text.

Fig. 2
Fig. 2

Power spectrum of the cavity-dumped laser (solid curve); the Kelly sidebands are clearly visible. The power spectrum of the SPM broadened pulse, which was used for white-light generation, is shown as a dashed curve. Note that the sharp structures next to the central part are contributed by the Kelly sidebands of the original pulse, which are not affected by SPM.

Fig. 3
Fig. 3

Solid curve, power spectrum of the white-light seed without amplification. Note that the short-wavelength part below 0.65 μ m is blocked by the aperture (VA in Fig. 1). Dashed curve, amplified white light.

Fig. 4
Fig. 4

Wavelength tunability of the amplified (a) signal and (b) idler.

Fig. 5
Fig. 5

IAC of the signal pulse at a center wavelength of 0.8 μ m . The corresponding pulse duration is 16 fs. The power spectrum with a bandwidth of 65 nm is shown in the inset.

Metrics